Guava RateLimiter提供了令牌桶算法实现:平滑突发限流(SmoothBursty)和平滑预热限流(SmoothWarmingUp)实现。

SmoothBursty:令牌生成速度恒定

 @Test
public void testAcquire() {
// acquire(i); 获取令牌,返回阻塞的时间,支持预消费.
RateLimiter limiter = RateLimiter.create(1); for (int i = 1; i < 10; i++) {
double waitTime = limiter.acquire();
System.out.println("cutTime=" + longToDate(System.currentTimeMillis()) + " acq:" + i + " waitTime:" + waitTime);
}
} public static String longToDate(long lo){
Date date = new Date(lo);
SimpleDateFormat sd = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
return sd.format(date);
}

输出结果:

cutTime=2019-03-29 09:31:42 acq:1 waitTime:0.0
cutTime=2019-03-29 09:31:43 acq:2 waitTime:0.989135
cutTime=2019-03-29 09:31:44 acq:3 waitTime:0.998023
cutTime=2019-03-29 09:31:45 acq:4 waitTime:0.999573
cutTime=2019-03-29 09:31:46 acq:5 waitTime:0.999359
cutTime=2019-03-29 09:31:47 acq:6 waitTime:0.999566
cutTime=2019-03-29 09:31:48 acq:7 waitTime:0.998763
cutTime=2019-03-29 09:31:49 acq:8 waitTime:0.999163
cutTime=2019-03-29 09:31:50 acq:9 waitTime:1.000036

说明:每秒1个令牌生成一个令牌,从输出可看出很平滑,这种实现将突发请求速率平均成固定请求速率。

下面demo是突发请求:

@Test
public void testAcquire2() {
// 请求突发
RateLimiter limiter = RateLimiter.create(5); for (int i = 1; i < 5; i++) {
double waitTime = 0;
if(i == 2){
waitTime = limiter.acquire(10);
}else{
waitTime = limiter.acquire(1);
} System.out.println("cutTime=" + longToDate(System.currentTimeMillis()) + " acq:" + i + " waitTime:" + waitTime);
}
}

输出:

cutTime=2019-03-29 09:53:55 acq:1 waitTime:0.0
cutTime=2019-03-29 09:53:56 acq:2 waitTime:0.188901
cutTime=2019-03-29 09:53:58 acq:3 waitTime:1.99789
cutTime=2019-03-29 09:53:58 acq:4 waitTime:0.198832

说明:

i=1,消费i个令牌,此时还剩4个令牌;

i=2,突发10个请求,令牌桶算法也允许了这种突发(允许消费未来的令牌);

i=3,上次请求消费了,所以需要等待2s;

下面看源码:


简单介绍下:Stopwatch

public final class Stopwatch {
private final Ticker ticker;//计时器,用于获取当前时间
private boolean isRunning;//计时器是否运行中的状态标记
private long elapsedNanos;//用于标记从计时器开启到调用统计的方法时过去的时间
private long startTick;//计时器开启的时刻时间 private long elapsedNanos() {
return this.isRunning ? this.ticker.read() - this.startTick + this.elapsedNanos : this.elapsedNanos;
}
public long elapsed(TimeUnit desiredUnit) {
return desiredUnit.convert(this.elapsedNanos(), TimeUnit.NANOSECONDS);
}
}

TimeUnit:

MILLISECONDS {
public long toNanos(long d) { return x(d, C2/C0, MAX/(C2/C0)); }
public long toMicros(long d) { return x(d, C2/C1, MAX/(C2/C1)); }
public long toMillis(long d) { return d; }
public long toSeconds(long d) { return d/(C3/C2); }
public long toMinutes(long d) { return d/(C4/C2); }
public long toHours(long d) { return d/(C5/C2); }
public long toDays(long d) { return d/(C6/C2); }
public long convert(long d, TimeUnit u) { return u.toMillis(d); }
int excessNanos(long d, long m) { return 0; }
}, MICROSECONDS {
public long toNanos(long d) { return x(d, C1/C0, MAX/(C1/C0)); }
public long toMicros(long d) { return d; }
public long toMillis(long d) { return d/(C2/C1); }
public long toSeconds(long d) { return d/(C3/C1); }
public long toMinutes(long d) { return d/(C4/C1); }
public long toHours(long d) { return d/(C5/C1); }
public long toDays(long d) { return d/(C6/C1); }
public long convert(long d, TimeUnit u) { return u.toMicros(d); }
int excessNanos(long d, long m) { return (int)((d*C1) - (m*C2)); }
}, NANOSECONDS {
public long toNanos(long d) { return d; }
public long toMicros(long d) { return d/(C1/C0); }
public long toMillis(long d) { return d/(C2/C0); }
public long toSeconds(long d) { return d/(C3/C0); }
public long toMinutes(long d) { return d/(C4/C0); }
public long toHours(long d) { return d/(C5/C0); }
public long toDays(long d) { return d/(C6/C0); }
public long convert(long d, TimeUnit u) { return u.toNanos(d); }
int excessNanos(long d, long m) { return (int)(d - (m*C2)); }
},

其中:

static final long C0 = 1L;
static final long C1 = C0 * 1000L;
static final long C2 = C1 * 1000L;
static final long C3 = C2 * 1000L;
static final long C4 = C3 * 60L;
static final long C5 = C4 * 60L;
static final long C6 = C5 * 24L;
@Test
public void stopwatch1() {
Stopwatch stopwatch = Stopwatch.createStarted(); doSomething();
stopwatch.stop(); // optional
long millis = stopwatch.elapsed(MILLISECONDS);
System.out.println("time: " + stopwatch);
} @Test
public void stopwatch2() {
Stopwatch stopwatch = Stopwatch.createStarted();
//doSomething();
stopwatch.stop();
long millis = stopwatch.elapsed(MILLISECONDS);
System.out.println("time: " + stopwatch); stopwatch.reset().start();
//doSomething();
stopwatch.stop();
millis = stopwatch.elapsed(MILLISECONDS);
System.out.println("time: " + stopwatch);
} public static void doSomething(){
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}

stopwatch1结果:

time: 100.8 ms

执行过程:

使用stopwatch对程序运行时间进行调试,首先调用StopWatch.createStarted()创建并启动一个stopwatch实例,调用stopwatch.stop()停止计时,此时会更新stopwatch的elapsedNanos时间,为stopwatch开始启动到结束计时的时间,再次调用stopwatch.elapsed(),获取stopwatch在start-stop时间段,时间流逝的长度。

RateLimiter.class

public static RateLimiter create(double permitsPerSecond) {
return create(permitsPerSecond, RateLimiter.SleepingStopwatch.createFromSystemTimer());//Stopwatch类稍后
} @VisibleForTesting
static RateLimiter create(double permitsPerSecond, RateLimiter.SleepingStopwatch stopwatch) {
RateLimiter rateLimiter = new SmoothBursty(stopwatch, 1.0D);
rateLimiter.setRate(permitsPerSecond);
return rateLimiter;
} public final void setRate(double permitsPerSecond) {
Preconditions.checkArgument(permitsPerSecond > 0.0D && !Double.isNaN(permitsPerSecond), "rate must be positive");
synchronized(this.mutex()) {
this.doSetRate(permitsPerSecond, this.stopwatch.readMicros());
}
} abstract void doSetRate(double var1, long var3);
说明:this.stopwatch.readMicros());源码最终调用的是
NANOSECONDS {
public long toNanos(long d) { return d; }
public long toMicros(long d) { return d/(C1/C0); } //return (stopwatch中的elapsedNanos,表示时间差)/(1L * 1000L/1L)
}

SmoothRateLimiter

final void doSetRate(double permitsPerSecond, long nowMicros) {
this.resync(nowMicros);
double stableIntervalMicros = (double)TimeUnit.SECONDS.toMicros(1L) / permitsPerSecond;
this.stableIntervalMicros = stableIntervalMicros;
this.doSetRate(permitsPerSecond, stableIntervalMicros);
}
abstract void doSetRate(double var1, double var3); void resync(long nowMicros) {
if (nowMicros > this.nextFreeTicketMicros) {
//相当于(double)(nowMicros - this.nextFreeTicketMicros) * (permitsPerSecond double)TimeUnit.SECONDS.toMicros(1L)) //令牌生成速率:xx/单位时间
double newPermits = (double)(nowMicros - this.nextFreeTicketMicros) / this.coolDownIntervalMicros();
this.storedPermits = Math.min(this.maxPermits, this.storedPermits + newPermits);
this.nextFreeTicketMicros = nowMicros;
}
}

说明:

nowMicros:表示用于标记从计时器开启到调用统计的方法时过去的时间
coolDownIntervalMicros:添加令牌时间间隔
stableIntervalMicros:添加令牌时间间隔 = (double)TimeUnit.SECONDS.toMicros(1L) / permitsPerSecond;(1秒/每秒的令牌数)
newPermits:时间段内新生令牌数
storedPermits:当前令牌数

nextFreeTicketMicros:

下一次请求可以获取令牌的起始时间,由于RateLimiter允许预消费,上次请求预消费令牌后,下次请求需要等待相应的时间到nextFreeTicketMicros时刻才可以获取令牌

SmoothBursty

static final class SmoothBursty extends SmoothRateLimiter {
final double maxBurstSeconds; SmoothBursty(SleepingStopwatch stopwatch, double maxBurstSeconds) {
super(stopwatch, null);
this.maxBurstSeconds = maxBurstSeconds;//在RateLimiter未使用时,最多存储几秒的令牌
} void doSetRate(double permitsPerSecond, double stableIntervalMicros) {
double oldMaxPermits = this.maxPermits;
this.maxPermits = this.maxBurstSeconds * permitsPerSecond;
if (oldMaxPermits == 1.0D / 0.0) { //相当于oldMaxPermits ==Double.POSITIVE_INFINITY ,Double.POSITIVE_INFINITY 表示无穷大 this.storedPermits = this.maxPermits;
} else {
this.storedPermits = oldMaxPermits == 0.0D ? 0.0D : this.storedPermits * this.maxPermits / oldMaxPermits;
} } long storedPermitsToWaitTime(double storedPermits, double permitsToTake) {
return 0L;
} double coolDownIntervalMicros() {
return this.stableIntervalMicros;
}
}

参数说明:

maxBurstSeconds:在RateLimiter未使用时,最多存储几秒的令牌
permitsPerSecond: 速率=令牌数/每秒
maxPermits :最大存储令牌数 = maxBurstSeconds * permitsPerSecond
storedPermits: 当前存储令牌数

RateLimiter几个常用接口分析

1、acquire() 函数主要用于获取permits个令牌,并计算需要等待多长时间,进而挂起等待,并将该值返回

RateLimiter.calss

@CanIgnoreReturnValue
public double acquire() {
return acquire(1);
} /**
* 获取令牌,返回阻塞的时间
**/
@CanIgnoreReturnValue
public double acquire(int permits) {
long microsToWait = reserve(permits); //获取等待时间后,阻塞线程
stopwatch.sleepMicrosUninterruptibly(microsToWait);
return 1.0 * microsToWait / SECONDS.toMicros(1L);
} final long reserve(int permits) {
checkPermits(permits);
synchronized (mutex()) {
return reserveAndGetWaitLength(permits, stopwatch.readMicros());
}
} final long reserveAndGetWaitLength(int permits, long nowMicros) {
long momentAvailable = this.reserveEarliestAvailable(permits, nowMicros);
return Math.max(momentAvailable - nowMicros, 0L);
}
abstract long reserveEarliestAvailable(int var1, long var2);

SmoothRateLimiter.class

final long reserveEarliestAvailable(int requiredPermits, long nowMicros) {
this.resync(nowMicros);
long returnValue = this.nextFreeTicketMicros;//resync()方法后,如果nowMicros > this.nextFreeTicketMicros,等于nowMicros double storedPermitsToSpend = Math.min((double)requiredPermits, this.storedPermits);
//freshPermits从令牌桶中获取令牌后还需要的令牌数量
double freshPermits = (double)requiredPermits - storedPermitsToSpend; //平滑这里this.storedPermitsToWaitTime()直接返回0L + 还需要令牌数量/速率(需要的时间)
long waitMicros = this.storedPermitsToWaitTime(this.storedPermits, storedPermitsToSpend) + (long)(freshPermits * this.stableIntervalMicros); //如果超前消费,将导致下次请求等待时间=LongMath.saturatedAdd(this.nextFreeTicketMicros, waitMicros);
this.nextFreeTicketMicros = LongMath.saturatedAdd(this.nextFreeTicketMicros, waitMicros);
this.storedPermits -= storedPermitsToSpend;
return returnValue;
}

2、tryAcquire()

函数可以尝试在timeout时间内获取令牌,如果可以则挂起等待相应时间并返回true,否则立即返回false

 public boolean tryAcquire(int permits, long timeout, TimeUnit unit) {
long timeoutMicros = Math.max(unit.toMicros(timeout), 0L);//超时时间
checkPermits(permits);
long microsToWait;
synchronized(this.mutex()) {
long nowMicros = this.stopwatch.readMicros();
if (!this.canAcquire(nowMicros, timeoutMicros)) {
return false;
}
//获取需要阻塞时间
microsToWait = this.reserveAndGetWaitLength(permits, nowMicros);
} this.stopwatch.sleepMicrosUninterruptibly(microsToWait);
return true;
} private boolean canAcquire(long nowMicros, long timeoutMicros) {
//下一次请求可以获取令牌的起始时间
return this.queryEarliestAvailable(nowMicros) - timeoutMicros <= nowMicros;
}
canAcquire用于判断timeout时间内是否可以获取令牌,通过判断当前时间+超时时间是否大于nextFreeTicketMicros 来决定是否能够拿到足够的令牌数,如果可以获取到,则过程同acquire,线程sleep等待,如果通过canAcquire在此超时时间内不能回去到令牌,则可以快速返回,不需要等待timeout后才知道能否获取到令牌。

SmoothWarmingUp:令牌生成速度缓慢提升直到维持在一个稳定值

SmoothWarmingUp创建方式:RateLimiter.create(doublepermitsPerSecond, long warmupPeriod, TimeUnit unit)

permitsPerSecond表示每秒新增的令牌数,warmupPeriod表示在从冷启动速率过渡到平均速率的时间间隔。

@Test
public void acquire1() {
RateLimiter limiter = RateLimiter.create(5, 1000, TimeUnit.MILLISECONDS);
for (int i = 1; i < 6; i++) {
System.out.println(limiter.acquire());
} try {
Thread.sleep(1000L);
} catch (InterruptedException e) {
e.printStackTrace();
} for (int i = 1; i < 6; i++) {
System.out.println(limiter.acquire());
}
}

结果:

0.0
0.518741
0.357811
0.219877
0.199584
0.0
0.361189
0.220761
0.19938
0.199856

速率是梯形上升速率的,也就是说冷启动时会以一个比较大的速率慢慢到平均速率;然后趋于平均速率(梯形下降到平均速率)。可以通过调节warmupPeriod参数实现一开始就是平滑固定速率。

参考:

https://www.cnblogs.com/xuwc/p/9123078.html

https://www.cnblogs.com/xuwc/p/9123078.html

高并发之限流RateLimiter(二)的更多相关文章

  1. SpringCloud之Zuul高并发情况下接口限流(十二)

    高并发下接口限流技术gauva(谷歌的框架) MySql最大连接数3000: 原理:框架每秒向桶里放100个令牌,接口请求来了先去拿令牌,拿到令牌后才能继续向后走,否则不允许向后执行:当接口请求太频繁 ...

  2. coding++:高并发解决方案限流技术-使用RateLimiter实现令牌桶限流-Demo

    RateLimiter是guava提供的基于令牌桶算法的实现类,可以非常简单的完成限流特技,并且根据系统的实际情况来调整生成token的速率. 通常可应用于抢购限流防止冲垮系统:限制某接口.服务单位时 ...

  3. 高并发解决方案限流技术-----使用RateLimiter实现令牌桶限流

    1,RateLimiter是guava提供的基于令牌桶算法的实现类,可以非常简单的完成限流特技,并且根据系统的实际情况来调整生成token的速率.通常可应用于抢购限流防止冲垮系统:限制某接口.服务单位 ...

  4. coding++:高并发解决方案限流技术---漏桶算法限流--demo

    1.漏桶算法 漏桶作为计量工具(The Leaky Bucket Algorithm as a Meter)时,可以用于流量整形(Traffic Shaping)和流量控制(TrafficPolici ...

  5. coding++:高并发解决方案限流技术--计数器--demo

    1.它是限流算法中最简单最容易的一种算法 计数器实现限流 每分钟只允许10个请求 第一个请求进去的时间为startTime,在startTime + 60s内只允许10个请求 当60s内超过十个请求后 ...

  6. 面试官:来谈谈限流-RateLimiter源码分析

    RateLimiter有两个实现类:SmoothBursty和SmoothWarmingUp,其都是令牌桶算法的变种实现,区别在于SmoothBursty加令牌的速度是恒定的,而SmoothWarmi ...

  7. 实例:接口并发限流RateLimiter

    需求:接口每秒最多只能相应1个请求 1.创建 全局类对象 import com.google.common.util.concurrent.RateLimiter; import org.spring ...

  8. 超详细的Guava RateLimiter限流原理解析

    超详细的Guava RateLimiter限流原理解析  mp.weixin.qq.com 点击上方“方志朋”,选择“置顶或者星标” 你的关注意义重大! 限流是保护高并发系统的三把利器之一,另外两个是 ...

  9. SpringBoot进阶教程(六十七)RateLimiter限流

    在上一篇文章nginx限流配置中,我们介绍了如何使用nginx限流,这篇文章介绍另外一种限流方式---RateLimiter. v限流背景 在早期的计算机领域,限流技术(time limiting)被 ...

随机推荐

  1. 原来Github上的README.md文件这么有意思——Markdown语言详解(sublime text2 版本)

    一直想学习 Markdown 语言,想起以前读的一篇 赵凯强 的 博客 <原来Github上的README.md文件这么有意思——Markdown语言详解>,该篇博主 使用的是Mac系统, ...

  2. 20145208 蔡野 《网络对抗》Exp7 网络欺诈技术防范

    20145208 蔡野 <网络对抗>Exp7 网络欺诈技术防范 本实践的目标理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法.具体有(1)简单应用SET工具建立冒名网站(2) ...

  3. selenium css定位方式

  4. Bootstrap3基础 img-thumbnail 给图片加一个圆角的边框

      内容 参数   OS   Windows 10 x64   browser   Firefox 65.0.2   framework     Bootstrap 3.3.7   editor    ...

  5. Flash Memory 简介【转】

    本文转载自:https://linux.codingbelief.com/zh/storage/emmc/ Flash Memory 是一种非易失性的存储器.在嵌入式系统中通常用于存放系统.应用和数据 ...

  6. git使用操作

    git config --system --unset credential.helper 重置git

  7. tp剩余未验证内容-4

    关于pop-up被blocked的问题 首先 这个pop-up的功能叫 popup blocker , 它是浏览器(包括ff, chrome等) 自身 所内置 的一个功能, 不是 安装的外部 插件/或 ...

  8. Directional RNA-seq data -which parameters to choose?

    Directional RNA-seq data -which parameters to choose? REF: https://chipster.csc.fi/manual/library-ty ...

  9. 题解——loj6280 数列分块入门4 (分块)

    分块维护一个区间和 然后记得更新的时候左边角块的tag不要打错到右边角块 #include <cstdio> #include <algorithm> #include < ...

  10. ocacle sql: 两张表左连接 ,1对多,取一条数据,取按时间最新的

    说明: MBGL_GZJH jh_id 对应 mbgl_gzjh_fkmx jh_id mbgl_gzjh_fkmx jh_id 有重复多条,但是 FKRQ 不一样,我们去 FKRQ 最新的一条. s ...