UVA 10158 并查集的经典应用
这个题目一看就是用并查集,有N个国家代表,在M行给出两两之间的关系,敌人或者朋友,(当然如果该关系跟已知关系冲突,则输出-1)
关系的几个约束条件时这样的
在朋友方面,朋友的朋友就是自己的朋友,这个就是并查集。
在敌人方面,
x和其所有朋友的敌人都是敌人。
x和其所有敌人的敌人都是朋友。
主要是这个敌人的状态不太好表示,不是一个并查集能做到的,我一开始犯糊涂,直接用个图把x的敌人存贮起来,但是因为每次交新的朋友或者敌人,就要搜索全图,而且要把自己的敌人圈更新到整个朋友圈,这样不仅难以实现,复杂度也是相当高
后来就发现一个神级方法,简单易用,即,每个国家都有自己的对立面(实际上不存在),作用是这样的,x的对立面为x+n,如果某国y要跟x做敌人,则,y就和x+n放在同一个并查集里。这样就不会跟本体有影响,但是又达到了结仇的目的。
这样的话,x和y结盟,则 x和y属于一个集合, x+n和y+n属于同一集合(把对立面也绑定,再结仇的时候无论是和x还是y结仇,都会同时跟两个国家结仇,这样就其实就达到了第一个条件)。
如果x和y结仇,则x和y+n在同一集合,同时,y和x+n在同一集合。(结仇之后,如果两个国家有共同的仇人,则通过并查集操作,必定到了同一个集合,这样就满足了仇人的仇人是朋友的条件)
这样判断前后是否冲突,也可以根据这几个条件,如果当前操作是结仇,则一旦发现x和y已经是一个集合(或者他们的对立面),则冲突
如果当前是结盟,一旦发现x和y+n是一个集合 或者 y和x+n是一个集合,则冲突。
#include <iostream>
#include <cstdio>
#define N 10010
using namespace std;
int f[*N];
int n,x,y,c;
void init()
{
for (int i=;i<=*n;i++){
f[i]=i;
}
}
int findset(int a)
{
if (a!=f[a])
f[a]=findset(f[a]);
return f[a];
} void solve()
{
int r1,r2,r3,r4;
r1=findset(x);
r2=findset(y);
r3=findset(x+n);
r4=findset(y+n);
//cout<<r1<<" "<<r2<<" "<<r3<<" "<<r4<<endl;
if (c==)
{
if (r1==r4){
puts("-1");
return;
}
f[r1]=r2;
f[r3]=r4;
return;
}
if (c==)
{
if (r1==r2)
{
puts("-1");
return;
}
f[r1]=r4;
f[r2]=r3;
return;
}
if (c==)
{
if (r1==r2)
puts("");
else
puts("");
}
if(c==)
{
if (r1==r4)
puts("");
else
puts("");
} }
int main()
{
int i,j;
scanf("%d",&n);
init();
while (scanf("%d%d%d",&c,&x,&y))
{
if (!c) break;
solve();
}
return ;
}
UVA 10158 并查集的经典应用的更多相关文章
- poj 1611:The Suspects(并查集,经典题)
The Suspects Time Limit: 1000MS Memory Limit: 20000K Total Submissions: 21472 Accepted: 10393 De ...
- UVa 10129 (并查集 + 欧拉路径) Play on Words
题意: 有n个由小写字母的单词,要求判断是否存在某种排列使得相邻的两个单词,前一个单词末字母与后一个单词首字母相同. 分析: 将单词的两个字母看做节点,则一个单词可以看做一条有向边.那么题中所求的排列 ...
- UVa 11987 并查集 Almost Union-Find
原文戳这 与以往的并查集不同,这次需要一个删除操作.如果是叶子节点还好,直接修改父亲指针就好. 但是如果要是移动根节点,指向它的所有子节点也会跟着变化. 所以要增加一个永远不会被修改的虚拟根节点,这样 ...
- POJ 1182食物链(分集合以及加权两种解法) 种类并查集的经典
题目链接:http://icpc.njust.edu.cn/Problem/Pku/1182/ 题意:给出动物之间的关系,有几种询问方式,问是真话还是假话. 定义三种偏移关系: x->y 偏移量 ...
- leetcode 76 dp& 强连通分量&并查集经典操作
800. Similar RGB Color class Solution { int getn(int k){ return (k+8)/17; } string strd(int k){ char ...
- ACM/ICPC 之 并查集-食物链(POJ1182)
并查集的经典题型,POJ上题目还是中文= =,一般看到中文题都会感觉不太简单,这道题的数学归纳用得比较多,可以简化代码,挺有意思的. 同类型的题目还有POJ1703,比这个要简单,想了解并查集基本介绍 ...
- (中等) POJ 1703 Find them, Catch them,带权并查集。
Description The police office in Tadu City decides to say ends to the chaos, as launch actions to ro ...
- 并查集--CSUOJ 1601 War
并查集的经典题目: CSUOJ 1601: War Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 247 Solved: 70[Submit][Sta ...
- 【带权并查集】poj1182 食物链
带权并查集,或者叫做种类并查集,经典题. http://blog.csdn.net/shuangde800/article/details/7974668 这份代码感觉是坠吼的. 我的代码是暴力分类讨 ...
随机推荐
- Oracle rownum用法、分页
转载:ORACLE 中ROWNUM用法总结! 第一部分 1.对于 Oracle 的 rownum 问题,很多资料都说不支持 >, >= , =, between...and ,只能用 ...
- 【问题管理】-- Tomcat8部署项目加载静态资源html页面编码错误
1.问题背景及解决方式 最近在回顾Tomcat部署Web项目,自己简单地从Tomcat的下载安装及配置server.xml文件入手,学习Tomcat的项目部署,在自己使用IDEA创建了一个简单地web ...
- 101-PHP二维数组的元素输出三,封装成函数
<?php $arr=array(array(76,87,68), array(65,89,95), array(90,80,66), array(90,95,65),5,234,56,'Hel ...
- 了解C#
了解C C#能编写那些程序 Windows桌面应用程序 桌面应用有自己独立的进程与操作系统进行消息通讯,操作系统对事件进行检测,传递给桌面应用进程,桌面应用进程对这些消息进行解释,处理后,把处理结果u ...
- Flink 复杂事物处理
简介 FlinkCEP是在Flink之上实现的复杂事件处理(CEP)库. 它允许你在无界的事件流中检测事件模式,让你有机会掌握数据中重要的事项. Flink CEP 首先需要用户创建定义一个个patt ...
- [题解] LuoguP4609 [FJOI2016]建筑师
传送门 首先对于高度为\(n\)的建筑,他的左边有\(A-1\)个建筑能被看到,右边有\(B-1\)个建筑能被看到,这两者类似,所以先来看左边. 一个建筑将会遮挡住它后面的高度比它矮的建筑,直到一个高 ...
- ACM-数细胞
题目描述:数细胞 一矩形阵列由数字0到9组成,数字1到9代表细胞,细胞的定义为沿细胞数字上下左右还是细胞数字则为同一细胞,求给定矩形阵列的细胞个数.编程需要用到的队列及其相关函数已经实现,你只需要完成 ...
- python 网页爬虫 基础篇
首先要连接自己的数据库 import pymysql import requests #需要导入模块 db = pymysql.connect('localhost', 'root', '****** ...
- BZOJ:2190: [SDOI2008]仪仗队
题解:欧拉函数 #include<iostream> #include<cstdio> #include<cstring> using namespace std; ...
- mysql数据库索引优化
参考 :http://www.cnblogs.com/yangmei123/archive/2016/04/10/5375723.html MySQL数据库的优化: 数据库优化的目的: ...