While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University,noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The sum of the digits of that number was equal to the sum of the digits of the prime factors of that number. Got it? Smith's telephone number was 493-7775. This number can be written as the product of its prime factors in the following way: 
4937775= 3*5*5*65837
The sum of all digits of the telephone number is 4+9+3+7+7+7+5= 42,and the sum of the digits of its prime factors is equally 3+5+5+6+5+8+3+7=42. Wilansky was so amazed by his discovery that he named this kind of numbers after his brother-in-law: Smith numbers. 
As this observation is also true for every prime number, Wilansky decided later that a (simple and unsophisticated) prime number is not worth being a Smith number, so he excluded them from the definition. 
Wilansky published an article about Smith numbers in the Two Year College Mathematics Journal and was able to present a whole collection of different Smith numbers: For example, 9985 is a Smith number and so is 6036. However,Wilansky was not able to find a Smith number that was larger than the telephone number of his brother-in-law. It is your task to find Smith numbers that are larger than 4937775!

Input

The input file consists of a sequence of positive integers, one integer per line. Each integer will have at most 8 digits. The input is terminated by a line containing the number 0.

Output

For every number n > 0 in the input, you are to compute the smallest Smith number which is larger than n,and print it on a line by itself. You can assume that such a number exists.

Sample Input

4937774
0
题目大意:
给你一个数,求大于这个数字并满足以下条件的最小值:
    条件:数字的各个位置加起来与用质数拆分该数字后得到的数字的各个位置之和相等 4937775= 3*5*5*65837
暴力模拟就可以啦 首先要知道质数拆分,然后将得到的每个数字的各个位置相加相等。如果与原数字相等的话说明找到啦!
#include<iostream>
#include<cstdio>
using namespace std; int check(int x){//由于数字范围太大,不能打表,只能这样一步一步来
for(int i=;i*i<=x;i++){
if(x%i==) return ;
}
return ;
} int f2(int x){
int sum=;
while(x){
sum+=x%;
x=x/;
}
return sum;
}
int f(int x){
int sum=;
for(int i=;i*i<=x;i++){//拆分
if(x%i==){
int ans=;
if(i<)
{
while(x%i==){
ans++;
x=x/i;
}
sum+=i*ans;
}
else {
int s=f2(i);
while(x%i==){
ans++;
x=x/i;
}
sum+=s*ans;
}
}
}
if(x>) sum+=f2(x);
return sum;
}
int main(){
int n;
while(scanf("%d",&n)!=EOF&&n){
for(int i=n+;;i++){
if(check(i)==){
if(f2(i)==f(i)){
printf("%d\n",i);
break;
} }
}
}
return ;
}

A - Smith Numbers POJ的更多相关文章

  1. Smith Numbers POJ - 1142 (暴力+分治)

    题意:给定一个N,求一个大于N的最小的Smith Numbers,Smith Numbers是一个合数,且分解质因数之后上质因子每一位上的数字之和 等于 其本身每一位数字之和(别的博客偷的题意) 思路 ...

  2. Smith Numbers POJ - 1142 暴力递归枚举

    题意: 给你一个数x,把这个分解成素数之积(假设是x1*x2*x3),如果   x的每一数位的和   等于  x1每一数位的和加上x2每一数位的和加上x3每一数位的和,那么他就是题目要找的数 示例: ...

  3. POJ 1142 Smith Numbers(史密斯数)

    Description 题目描述 While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Leh ...

  4. poj 1142 Smith Numbers

    Description While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh U ...

  5. POJ 1142:Smith Numbers(分解质因数)

                                   Smith Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submiss ...

  6. Smith Numbers - PC110706

    欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/uva10042.html 原创:Smit ...

  7. poj1142 Smith Numbers

    Poj1142 Smith Numbers Smith Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 13854 ...

  8. UVA 10042 Smith Numbers(数论)

    Smith Numbers Background While skimming his phone directory in 1982, Albert Wilansky, a mathematicia ...

  9. Smith Numbers(分解质因数)

    Smith Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14173   Accepted: 4838 De ...

随机推荐

  1. vue的使用经验

    导读 这一次的口号是,带你重新认识vue,拯救1,2个前端开发者. 从2018年从事前端职业以来,呆过大小公司,干这一行都有2年多.代码写的多了,就越来越体会新手程序员都是挖坑的.在工作过程中,用一种 ...

  2. Ubuntu环境下部署Django+uwsgi+nginx总结

    前言 这是我在搭建Django项目时候的过程,拿来总结记录,以备不时之需. 项目采用nginx+uwsgi的搭配方式. 项目依赖包采用requirements.txt文件管理的方式. 本地准备工作 确 ...

  3. [LeetCode] 937. Reorder Data in Log Files 日志文件的重新排序

    You have an array of `logs`.  Each log is a space delimited string of words. For each log, the first ...

  4. 卷积的发展历程,原理和基于 TensorFlow 的实现

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 稀疏交互 在生物学家休博尔和维瑟尔早期关于猫视觉皮层的研究中发现, ...

  5. Rasa Stack:创建支持上下文的人工智能助理和聊天机器人教程

    相关概念 Rasa Stack 是一组开放源码机器学习工具,供开发人员创建支持上下文的人工智能助理和聊天机器人: • Core = 聊天机器人框架包含基于机器学习的对话管理 • NLU = 用于自然语 ...

  6. 安装arcgis server时提示“应用程序无法启动,因为应用程序......或使用命令行sxstrace.exe”

    说一下这个原因:有几个条件不满足会产生这样的问题: 1.软件的发布是不需要安装的,直接在vs里编译好release版就发布了,而发布的时候如果缺少一些库文件,就会产生这样的问题.      一版都是目 ...

  7. macro

    Hello, 宏定义魔法世界 宏只是在预处理器里进行文本替换,没有类型,不做任何类型检查,编译器可以对相同的字符串进行优化.只保存一份到 .rodata 段.甚至有相同后缀的字符串也可以优化,你可以用 ...

  8. Linux虚拟机-CentOS7常用命令

    1.查找虚拟机的ip地址:$ ifconfig ~inet 192.168.68.136

  9. [bzoj1029]建筑抢修<贪心>

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1029 解析:这也算bzoj中比较简单的一道题,其实想通了就是非常的简单. 这题用贪心的方式 ...

  10. ConcurrentHashMap红黑树的实现

    红黑树 红黑树是一种特殊的二叉树,主要用它存储有序的数据,提供高效的数据检索,时间复杂度为O(lgn),每个节点都有一个标识位表示颜色,红色或黑色,有如下5种特性:1.每个节点要么红色,要么是黑色:2 ...