考虑k=1的做法:这是一道原题,我还写过题解,其实挺水的,但当时我菜还是看题解的:https://www.cnblogs.com/hfctf0210/p/10187947.html。其实就是树上差分后值为1。

考虑k>1的做法:其实可以再次树上差分,给每个点i赋值v[i]=dep[i]k-dep[i-1]k,然后还是和原来一样开一棵线段树,记录一个val[rt]表示当前节点内区间v值的和,以及sum[rt]表示区间值。修改时打标记,只需要将sum[rt]+=v*val[rt],lazy[rt]+=v即可。树剖一下即可。

#include<bits/stdc++.h>
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
using namespace std;
typedef pair<int,int>pii;
const int N=,mod=;
int n,Q,k,cnt,dep[N],fa[N],pw[N],sz[N],son[N],top[N],id[N],dfx[N];
int ans[N],sum[N<<],val[N<<],lazy[N<<];
vector<int>G[N];
vector<pii>vec[N];
int qpow(int a,int b)
{
int ret=;
while(b)
{
if(b&)ret=1ll*ret*a%mod;
a=1ll*a*a%mod,b>>=;
}
return ret;
}
void dfs(int u)
{
dep[u]=dep[fa[u]]+,sz[u]=;
for(int i=;i<G[u].size();i++)
if(G[u][i]!=fa[u])
{
dfs(G[u][i]),sz[u]+=sz[G[u][i]];
if(sz[G[u][i]]>sz[son[u]])son[u]=G[u][i];
}
}
void dfs2(int u,int tp)
{
top[u]=tp,id[u]=++cnt,dfx[cnt]=u;
if(son[u])dfs2(son[u],tp);
for(int i=;i<G[u].size();i++)
if(G[u][i]!=fa[u]&&G[u][i]!=son[u])dfs2(G[u][i],G[u][i]);
}
void build(int l,int r,int rt)
{
if(l==r){val[rt]=pw[dep[dfx[l]]];return;}
int mid=l+r>>;
build(lson),build(rson);
val[rt]=(val[rt<<]+val[rt<<|])%mod;
}
void pushdown(int rt)
{
if(!lazy[rt])return;
int v=lazy[rt];lazy[rt]=;
lazy[rt<<]=(lazy[rt<<]+v)%mod,sum[rt<<]=(sum[rt<<]+1ll*v*val[rt<<])%mod;
lazy[rt<<|]=(lazy[rt<<|]+v)%mod,sum[rt<<|]=(sum[rt<<|]+1ll*v*val[rt<<|])%mod;
}
void update(int L,int R,int l,int r,int rt)
{
if(L<=l&&r<=R){lazy[rt]++,sum[rt]=(sum[rt]+val[rt])%mod;return;}
pushdown(rt);
int mid=l+r>>;
if(L<=mid)update(L,R,lson);
if(R>mid)update(L,R,rson);
sum[rt]=(sum[rt<<]+sum[rt<<|])%mod;
}
void Update(int u)
{
while(top[u]!=)update(id[top[u]],id[u],,n,),u=fa[top[u]];
update(,id[u],,n,);
}
int query(int L,int R,int l,int r,int rt)
{
if(L<=l&&r<=R)return sum[rt];
pushdown(rt);
int mid=l+r>>,ret=;
if(L<=mid)ret=(ret+query(L,R,lson))%mod;
if(R>mid)ret=(ret+query(L,R,rson))%mod;
return ret;
}
int Query(int u)
{
int ret=;
while(top[u]!=)ret=(ret+query(id[top[u]],id[u],,n,))%mod,u=fa[top[u]];
ret=(ret+query(,id[u],,n,))%mod;
return ret;
}
int main()
{
scanf("%d%d%d",&n,&Q,&k);
for(int i=;i<=n;i++)pw[i]=(qpow(i,k)-qpow(i-,k)+mod)%mod;
for(int i=;i<=n;i++)scanf("%d",&fa[i]),G[fa[i]].push_back(i);
dfs(),dfs2(,);
build(,n,);
for(int i=,x,y;i<=Q;i++)scanf("%d%d",&x,&y),vec[x].push_back(pii(y,i));
for(int i=;i<=n;i++)
{
Update(i);
for(int j=;j<vec[i].size();j++)ans[vec[i][j].second]=Query(vec[i][j].first);
}
for(int i=;i<=Q;i++)printf("%d\n",ans[i]);
}

[GX/GZOI2019]旧词(树上差分+树剖+线段树)的更多相关文章

  1. LOJ#3088. 「GXOI / GZOI2019」旧词(树剖+线段树)

    题面 传送门 题解 先考虑\(k=1\)的情况,我们可以离线处理,从小到大对于每一个\(i\),令\(1\)到\(i\)的路径上每个节点权值增加\(1\),然后对于所有\(x=i\)的询问查一下\(y ...

  2. 【bzoj4699】树上的最短路(树剖+线段树优化建图)

    题意 给你一棵 $n$ 个点 $n-1$ 条边的树,每条边有一个通过时间.此外有 $m$ 个传送条件 $(x_1,y_1,x_2,y_2,c)$,表示从 $x_1$ 到 $x_2$ 的简单路径上的点可 ...

  3. BZOJ_2238_Mst_树剖+线段树

    BZOJ_2238_Mst_树剖+线段树 Description 给出一个N个点M条边的无向带权图,以及Q个询问,每次询问在图中删掉一条边后图的最小生成树.(各询问间独立,每次询问不对之后的询问产生影 ...

  4. 【BZOJ5210】最大连通子块和 树剖线段树+动态DP

    [BZOJ5210]最大连通子块和 Description 给出一棵n个点.以1为根的有根树,点有点权.要求支持如下两种操作: M x y:将点x的点权改为y: Q x:求以x为根的子树的最大连通子块 ...

  5. [LNOI2014]LCA(树剖+线段树)

    \(\%\%\% Fading\) 此题是他第一道黑题(我的第一道黑题是蒲公英) 一直不敢开,后来发现是差分一下,将询问离线,树剖+线段树维护即可 \(Code\ Below:\) #include ...

  6. [CF1007D]Ants[2-SAT+树剖+线段树优化建图]

    题意 我们用路径 \((u, v)\) 表示一棵树上从结点 \(u\) 到结点 \(v\) 的最短路径. 给定一棵由 \(n\) 个结点构成的树.你需要用 \(m\) 种不同的颜色为这棵树的树边染色, ...

  7. LUOGU P1967 货车运输(最大生成树+树剖+线段树)

    传送门 解题思路 货车所走的路径一定是最大生成树上的路径,所以先跑一个最大生成树,之后就是求一条路径上的最小值,用树剖+线段树,注意图可能不连通.将边权下放到点权上,但x,y路径上的lca的答案不能算 ...

  8. BZOJ_4551_[Tjoi2016&Heoi2016]树_树剖+线段树

    BZOJ_4551_[Tjoi2016&Heoi2016]树_树剖+线段树 Description 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为 ...

  9. BZOJ_2157_旅游_树剖+线段树

    BZOJ_2157_旅游_树剖+线段树 Description Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接.为了方便游客到达每个景点但 ...

  10. BZOJ3531-[Sdoi2014]旅行(树剖+线段树动态开点)

    传送门 完了今天才知道原来线段树的动态开点和主席树是不一样的啊 我们先考虑没有宗教信仰的限制,那么就是一个很明显的树剖+线段树,路径查询最大值以及路径和 然后有了宗教信仰的限制该怎么做呢? 先考虑暴力 ...

随机推荐

  1. 关于github无法访问的问题(转载)

    原文链接:https://blog.csdn.net/qq_32239767/article/details/80180560 连续几天了github一直都无法访问,宿舍几台电脑我都试了,排除了自己电 ...

  2. 吴裕雄--天生自然JAVA SPRING框架开发学习笔记:Spring体系结构详解

    Spring 框架采用分层架构,根据不同的功能被划分成了多个模块,这些模块大体可分为 Data Access/Integration.Web.AOP.Aspects.Messaging.Instrum ...

  3. Keras + Flask 提供接口服务的坑~~~

    最近在搞Keras,训练完的模型要提供个预测服务出来.就想了个办法,通过Flask提供一个http服务,后来发现也能正常跑,但是每次预测都需要加载模型,效率非常低. 然后就把模型加载到全局,每次要用的 ...

  4. Q3:Longest Substring Without Repeating Characters

    3. Longest Substring Without Repeating Characters 官方的链接:3. Longest Substring Without Repeating Chara ...

  5. Win10 MySQL5.7中文乱码问题

    https://blog.csdn.net/hh___56789/article/details/87900923 最好把 utf8 都换成utf8mb4 ,以免以后遇到意想不到的错误.utf8有漏洞 ...

  6. idea 2019.3 最新破解补丁和激活码,可破解至2089年!

    链接:https://blog.csdn.net/qq_42914528/article/details/85617901 上面方法失效了,请尝试以下方式激活(2020.1.6更新) idea激活码( ...

  7. 78.objects对象所属类原理分析

    def index3(request): # 查找文章题目中包含中国的文章分类 category = Category.objects.filter(article__title__contains= ...

  8. 理解String的intern()方法

    API文档中的介绍: intern public String intern() Returns a canonical representation for the string object. A ...

  9. 华为荣耀magic book(锐龙版)安装ubuntu系统

    荣耀magic book锐龙版性价比很高,前段时间在朋友推荐下我自己也入手了一台.机器整体感觉不错,续航时间长(办公.无线上网5-6小时吧),速度快,买的时候4300,现在已经降到4000以下了,也算 ...

  10. h5-边框图片

    1.边框图片详解 <style> *{ ; ; } div{ width: 900px; height: 900px; margin: 100px auto; border: 133px ...