题目链接:http://codeforces.com/contest/894/problem/B

题目大意:

  往一个 \(n \times m\) 的网格中填数字 \((1 \le n,m \le 10^{18})\),使得网格的任意一行和任意一列的乘积均为 \(k (k \in \{-1, 1\}).\)问有多少种方案。

知识点:  费马小定理、快速幂

解题思路:

  1、网格中的数字,要么是 1,要么是 -1;

  2、如果网格中 \((n-1) \times (m-1)\) 的子网格上的数字已经确定,那么最后一行和最后一列上的数字也随之确定,整个网格亦即随之确定,因此填数字的方案数为 \(2^{(n-1)(m-1)}\). 要理解这个结论为什么成立,可以试着想象:当网格中 \((n-1) \times (m-1)\) 的子网格上填满 1(此时最后一行和最后一列也已经确定),如果改变子网格上的数字,只要随之改变外层的数字即可。但是,在一种情况下答案为 0 :当 \(k = -1\) 并且 n 和 m 的奇偶性不同时。对于这一点,我们可以这么分析:

  假设 \(k = -1, n = 1, m = 2x (x \in N)\),答案显然为 0;

  则 \(k = -1, n = 2, m = 2x + 1 (x \in N)\),答案为 0;

  由此类推,\(k = -1, n = 1 + y, m = 2x + y (x, y \in N)\),答案亦为 0.

AC代码:

 #include <iostream>
#include <cstdio> using namespace std;
typedef long long ll;
const ll mod = ; ll Fast_Power(ll t){//快速幂
ll ret=;
ll a=;
while(t){
if(t&) ret=ret*a%mod;
t>>=;
a=a*a%mod;
}
return ret;
}
int main()
{
ll n,m;
int k;
scanf("%lld%lld%d",&n,&m,&k);
if(k==-&&(n%!=m%))
printf("0\n");
else{
ll ans=Fast_Power(((n-)%(mod-))*((m-)%(mod-))%(mod-))%mod;//此处应用费马小定理
printf("%lld\n",ans);
}
return ;
}

CF894B Ralph And His Magic Field的更多相关文章

  1. codeforces #447 894A QAQ 894B Ralph And His Magic Field 894C Marco and GCD Sequence

    A.QAQ 题目大意:从给定的字符串中找出QAQ的个数,三个字母的位置可以不连续 思路:暴力求解,先找到A的位置,往前扫,往后扫寻找Q的个数q1,q2,然 后相乘得到q1*q2,这就是这个A能够找到的 ...

  2. codeforces 894B - Ralph And His Magic Field - [数学题]

    题目链接:https://cn.vjudge.net/problem/CodeForces-894B Ralph has a magic field which is divided into n × ...

  3. Codeforces 894B - Ralph And His Magic Field

    894B - Ralph And His Magic Field 思路: 当k为1时,如果n和m奇偶性不同,那么没有答案. 可以证明,在其他情况下有答案,且答案为2^(n-1)*(m-1),因为前n- ...

  4. Codeforces 894.B Ralph And His Magic Field

    B. Ralph And His Magic Field time limit per test 1 second memory limit per test 256 megabytes input ...

  5. Codeforces Round #447 (Div. 2) B. Ralph And His Magic Field【数论/组合数学】

    B. Ralph And His Magic Field time limit per test 1 second memory limit per test 256 megabytes input ...

  6. Codeforces Round #447 (Div. 2) B. Ralph And His Magic Field 数学

    题目链接 题意:给你三个数n,m,k;让你构造出一个nm的矩阵,矩阵元素只有两个值(1,-1),且满足每行每列的乘积为k,问你多少个矩阵. 解法:首先,如果n,m奇偶不同,且k=-1时,必然无解: 设 ...

  7. 【Codeforces Round #447 (Div. 2) B】Ralph And His Magic Field

    | [链接] 我是链接,点我呀:) [题意] 给你一个n*m矩阵,让你在里面填数字. 使得每一行的数字的乘积都为k; 且每一列的数字的乘积都为k; k只能为1或-1 [题解] 显然每个位置只能填1或- ...

  8. Codeforces Round #447 (Div. 2) 题解 【ABCDE】

    BC都被hack的人生,痛苦. 下面是题解的表演时间: A. QAQ "QAQ" is a word to denote an expression of crying. Imag ...

  9. Codeforces Round #447 (Div. 2)

    我感觉这场CF还是比较毒的,虽然我上分了... Problem A  QAQ 题目大意:给你一个由小写字母构成的字符串,问你里面有多少个QAQ. 思路:找字符串中的A然后找两边的Q即可,可以枚举找Q, ...

随机推荐

  1. 从Webpack源码探究打包流程,萌新也能看懂~

    简介 上一篇讲述了如何理解tapable这个钩子机制,因为这个是webpack程序的灵魂.虽然钩子机制很灵活,而然却变成了我们读懂webpack道路上的阻碍.每当webpack运行起来的时候,我的心态 ...

  2. ES6的let和const命令(一)

    2019独角兽企业重金招聘Python工程师标准>>> ES6新增了let命令,用来声明变量.它的用法类似于var,但是所声明的变 量,只在let命令所在的代码块内有效. let   ...

  3. Xapian实战(一):环境搭建 + 简介

    1. 参考资料 http://xapian.org/docs/install.html Xapian的存储系统.性能以及检索模型等 2. 安装 1) xapian # ./configure --pr ...

  4. USACO Training Section 1.2 [USACO1.2]方块转换 Transformations

    题目描述 一块N x N(1<=N<=10)正方形的黑白瓦片的图案要被转换成新的正方形图案.写一个程序来找出将原始图案按照以下列转换方法转换成新图案的最小方式: 1:转90度:图案按顺时针 ...

  5. 网络流--最大流--POJ 1273 Drainage Ditches

    链接 Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clov ...

  6. RobotFrameWork 自动化环境搭建(基于 python2.7)

    1.自动化工具安装顺序 robot Framework(两个RF框架) WXpython(不要更改安装路径,自动安装在python文件中) 安装依赖库 RF3.0 和 RF1.5.2.1 打开 rid ...

  7. muduo网络库源码学习————线程池实现

    muduo库里面的线程池是固定线程池,即创建的线程池里面的线程个数是一定的,不是动态的.线程池里面一般要包含线程队列还有任务队列,外部程序将任务存放到线程池的任务队列中,线程池中的线程队列执行任务,也 ...

  8. VUE生命周期中的钩子函数及父子组件的执行顺序

    先附一张官网上的vue实例的生命周期图,每个Vue实例在被创建的时候都需要经过一系列的初始化过程,例如需要设置数据监听,编译模板,将实例挂载到DOM并在数据变化时更新DOM等.同时在这个过程中也会运行 ...

  9. shell之路 shell核心语法【第一篇】shell初识

    shell简介 1.Shell是Unix的脚本语言,是与 Unix/Linux 交互的工具,shell使用的熟练程度反映了用户对Unix/Linux使用的熟练程度 2.Shell是系统命令+程序逻辑的 ...

  10. Redis集群搭建的三种方式

    一.Redis主从 1.1 Redis主从原理 和MySQL需要主从复制的原因一样,Redis虽然读取写入的速度都特别快,但是也会产生性能瓶颈,特别是在读压力上,为了分担压力,Redis支持主从复制. ...