题意:求每个点的子树中哪一层节点数最多,如果有节点数最多不唯一,取层数最小的。

题解:dus on tree

基本想法是对每一个节点都构建一个deep数组,然后从底向上更新过来,但是这样空间复杂度和时间复杂度都会是O(n^2)无法承受。

然后向办法共用deep数组和记录其数值的数组,那么这时候对于一个节点来说,如果他每次都要重新遍历他所有的子节点,那么时间复杂度仍是O(n^2),所以考虑保留他某个儿子的火种,那当然是保留其子树最大的儿子节点了,所以每次先dfs其不是子数最大的儿子的节点,而后遍历子数最大的儿子节点,这个顺序不能反,因为你要对先遍历的清空,这是由于你共用了数组,所以每次访问前都要清空cnt数组,但是最后一个可以不清空,因为他没有别的儿子要访问了。

复杂度分析:由于重链是直接继承(大儿子最后访问不清空)的关系,也就是O(1)就可以了,考虑轻链,对于某个点来说,他一直跑一直跑到根节点,至多经过logn条轻链,因为每条轻链都会导致节点总数目*2,所以是logn条,所以总复杂度就是nlogn了

算法的关键点就是利用了重链轻链的思想,重用了数组,适用于查询所有节点的题目。

https://codeforces.com/blog/entry/44351     //codeforce博客链接

#include<vector>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e6+;
vector<int>G[N];
int n,sz[N],deep[N],c[N],ans[N];
void getsz(int x,int f,int dt){
sz[x]=;
deep[x]=dt;
for(int i=;i<(int)G[x].size();++i) {
int v=G[x][i];
if(v==f) continue;
getsz(v,x,dt+);
sz[x]+=sz[v];
}
}
int mx,id;
void mdy(int x,int y){
c[x]+=y;
if(c[x]>mx) mx=c[x],id=x;
if(c[x]==mx&&x<id) id=x;
}
void add(int u,int p,int x){
mdy(deep[u],x);
for(int i=;i<(int)G[u].size();++i){
int v=G[u][i];
if(v==p) continue;
add(v,u,x);
}
}
void dfs(int u,int p,bool keep){
int big=-,now=;
for(int i=;i<(int)G[u].size();++i) {
int v=G[u][i];
if(v==p) continue;
if(sz[v]>now) now=sz[v],big=v;
}
for(int i=;i<(int)G[u].size();++i) {
int v=G[u][i];
if(v==big||v==p) continue;
dfs(v,u,);
}
if(~big) dfs(big,u,);
mdy(deep[u],);
for(int i=;i<(int)G[u].size();++i) {
int v=G[u][i];
if(v==big||v==p) continue;
add(v,u,);
}
ans[u]=id;
if(!keep){
mdy(deep[u],-);
for(int i=;i<(int)G[u].size();++i){
int v=G[u][i];
if(v==p) continue;
add(v,u,-);
}
mx=id=;
}
}
int main(){
int x,y;
scanf("%d",&n);
for(int i=;i<n;++i) {
scanf("%d%d",&x,&y);
G[x].push_back(y);
G[y].push_back(x);
}
getsz(,,);
dfs(,,);
for(int i=;i<=n;++i) printf("%d\n",ans[i]-deep[i]);
}

F. Dominant Indices的更多相关文章

  1. Codeforces 1009 F - Dominant Indices

    F - Dominant Indices 思路:树上启发式合并 先跑轻子树,然后清除轻子树的信息 最后跑重子树,不清除信息 然后再跑一遍轻子树,重新加回轻子树的信息 由于一个节点到根节点最多有logn ...

  2. Codeforces 1009 F. Dominant Indices(长链剖分/树上启发式合并)

    F. Dominant Indices 题意: 给一颗无向树,根为1.对于每个节点,求其子树中,哪个距离下的节点数量最多.数量相同时,取较小的那个距离. 题目: 这类题一般的做法是树上的启发式合并,复 ...

  3. Educational Codeforces Round 47 (Rated for Div. 2)F. Dominant Indices 线段树合并

    题意:有一棵树,对于每个点求子树中离他深度最多的深度是多少, 题解:线段树合并快如闪电,每个节点开一个权值线段树,递归时合并即可,然后维护区间最多的是哪个权值,到x的深度就是到根的深度减去x到根的深度 ...

  4. CF 1009 F Dominant Indices —— 长链剖分+指针

    题目:http://codeforces.com/contest/1009/problem/F 也可以用 dsu on tree 的做法,全局记录一个 dep,然后放进堆里,因为字典序要最小,所以再记 ...

  5. 【CF1009F】Dominant Indices(长链剖分)

    [CF1009F]Dominant Indices(长链剖分) 题面 洛谷 CF 翻译: 给定一棵\(n\)个点,以\(1\)号点为根的有根树. 对于每个点,回答在它子树中, 假设距离它为\(d\)的 ...

  6. CF1009F Dominant Indices 解题报告

    CF1009F Dominant Indices 题意简述 给出一颗以\(1\)为跟的有根树,定义\(d_{i,j}\)为以\(i\)为根节点的子树中到\(i\)的距离恰好为\(j\)的点的个数,对每 ...

  7. [CF1009F] Dominant Indices (+dsu on tree详解)

    这道题用到了dsu(Disjoint Set Union) on tree,树上启发式合并. 先看了CF的官方英文题解,又看了看zwz大佬的题解,差不多理解了dsu on tree的算法. 但是时间复 ...

  8. 【Cf Edu #47 F】Dominant Indices(长链剖分)

    要求每个点子树中节点最多的层数,一个通常的思路是树上启发式合并,对于每一个点,保留它的重儿子的贡献,暴力扫轻儿子将他们的贡献合并到重儿子里来. 参考重链剖分,由于一个点向上最多只有$log$条轻边,故 ...

  9. CF1009F Dominant Indices(启发式合并)

    You are given a rooted undirected tree consisting of nn vertices. Vertex 11 is the root. Let's denot ...

随机推荐

  1. Ubuntu下访问Windows中Postgresql

    因为项目的原因,需要将Ubuntu中的一些信息记录到Windows中的Postgresql数据库中,查看网上信息,最后成功了,特地记录以下,需要以下步骤: (1)在Windows中Postgresql ...

  2. Vs Code中炫酷写代码插件Power Mode的安装配置

    扩展栏搜索 Power Mode 安装 安装后重启vs code 文件->首选项->设置 搜索setting.json,点击在setting.json中编辑 打开之后在右侧用户设置里添加以 ...

  3. 新手上路:Laravel-控制器基础

    1.控制器在哪 Controller目录默认存放于app\Htpp\Controllers下,当然,你可以自定义这个目录: Controllers文件夹有一个控制器基类Controller.php,你 ...

  4. flex学习

            今天看视频学习的时候,发现css有一个 flex 的属性,非常的好用,为了让自己能够熟记,特意来分享一下flex的用法. 首先,采用Flex布局的元素,称为Flex容器(flex co ...

  5. bootstrap-分页-默认分页

    说明 默认分页 示例 <!DOCTYPE html> <html lang="zh-CN">    <head>      <meta c ...

  6. 为给定字符串生成MD5指纹

    import java.security.MessageDigest; import java.security.NoSuchAlgorithmException; import org.apache ...

  7. pomelo安装笔记

    npm install -dnpm config set registry https://registry.npm.taobao.orgnpm install pomelo -gpomelo lis ...

  8. Codeforce 263D Cycle in Graph 搜索 图论 哈密尔顿环

    You've got a undirected graph G, consisting of n nodes. We will consider the nodes of the graph inde ...

  9. 金钱货币用什么类型--(Java)

    0.前言 项目中,基本上都会涉及到金钱:那么金钱用什么数据类型存储呢? 不少新人都会认为用double,因为它是双精度类型啊,或者float, 其实,float和double都是不能用来表示精确的类型 ...

  10. Tarjan缩点割点(模板)

    描述:https://www.luogu.com.cn/problem/P3387 给定一个 nn 个点 mm 条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权 ...