spark机器学习从0到1特征抽取–Word2Vec(十四)

一、概念
Word2vec是一个Estimator,它采用一系列代表文档的词语来训练word2vecmodel。该模型将每个词语映射到一个固定大小的向量。word2vecmodel使用文档中每个词语的平均数来将文档转换为向量,然后这个向量可以作为预测的特征,来计算文档相似度计算等等。
二、代码实现
2.1、引包,获取spark
首先,我们引入相关包:
import java.util.Arrays;
import java.util.List;
import org.apache.spark.ml.feature.Word2Vec;
import org.apache.spark.ml.feature.Word2VecModel;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.ArrayType;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;块
然后是获取spark
SparkSession spark = SparkSession.builder().appName("Word2VecTest").master("local").getOrCreate();
2.2、构建测试数据
接着呢来构建一个DataFrame,往DateFrame里加一些测试的文档信息
List<Row> rawData = Arrays.asList(RowFactory.create(Arrays.asList("Hi I heard about Spark".split(","))),
RowFactory.create(Arrays.asList("I wish Java could use case classes".split(","))),
RowFactory.create(Arrays.asList("Logistic regression models are neat".split(","))));
StructType schema = new StructType(new StructField[] {
new StructField("text",new ArrayType(DataTypes.StringType,false),false,Metadata.empty())
});
Dataset<Row> documentDF = spark.createDataFrame(rawData,schema);
documentDF.show(false);
我们来查看一下控制台的输出结果:
+-------------------------------------+
|text |
+-------------------------------------+
|[Hi I heard about Spark] |
|[I wish Java could use case classes] |
|[Logistic regression models are neat]|
+-------------------------------------+
2.3、新建评估器,训练,转换得到向量
接下来我们新建一个Word2Vec的评估器,把单词和向量建立一个映射,设定输入为文本信息text,输出为追加列result,变量的大小为3,最小计数为0。建立完之后,用Word2Vec评估器对文档进行训练和转换,得到Dataset的数据集。
Word2Vec word2Vec = new Word2Vec().setInputCol("text")
.setOutputCol("result")
.setVectorSize(3)
.setMinCount(0);
Word2VecModel model = word2Vec.fit(documentDF);
Dataset<Row> result = model.transform(documentDF);
result.show(false);
我们看一下输出结果:
+-----------------------------------------+-------------------------------------------------------------------------------+
|text |result |
+-----------------------------------------+-------------------------------------------------------------------------------+
|[Hi I heard about Spark] |[-0.12674053013324738,0.09846510738134384,-0.10375533252954483] |
|[I wish Java could use case classes] |[-0.1633371263742447,-0.14517612755298615,0.11354436725378036] |
|[Logistic regression models are neat] |[-0.019123395904898643,-0.13107778131961823,0.14307855069637299]|
+--------------------------------------- -+-------------------------------------------------------------------------------+
我们可以看到,通过Word2VecModel将文档转换为向量,然后这个向量可以作为预测的特征,来计算文档相似度计算啦。
spark机器学习从0到1特征抽取–Word2Vec(十四)的更多相关文章
- spark机器学习从0到1特征提取 TF-IDF(十二)
一.概念 “词频-逆向文件频率”(TF-IDF)是一种在文本挖掘中广泛使用的特征向量化方法,它可以体现一个文档中词语在语料库中的重要程度. 词语由t表示,文档由d表示,语料库由D表示.词频TF ...
- spark机器学习从0到1特征抽取–CountVectorizer(十三)
一.概念 CountVectorizer 旨在通过计数来将一个文档转换为向量.当不存在先验字典时,Countvectorizer作为Estimator提取词汇进行训练,并生成一个CountVe ...
- spark机器学习从0到1聚类算法 (十)
一.概念 1.1.定义 按照某一个特定的标准(比如距离),把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不再同一个簇内的数据对象的差异性也尽可能的大. 聚类属于典型 ...
- spark机器学习从0到1介绍入门之(一)
一.什么是机器学习 机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多门学科.专门研究计算机怎样模拟或实现人类的学习行 ...
- spark机器学习从0到1特征变换-标签和索引的转化(十六)
一.原理 在机器学习处理过程中,为了方便相关算法的实现,经常需要把标签数据(一般是字符串)转化成整数索引,或是在计算结束后将整数索引还原为相应的标签. Spark ML 包中提供了几个相关的转换器 ...
- spark机器学习从0到1特征选择-卡方选择器(十五)
一.公式 卡方检验的基本公式,也就是χ2的计算公式,即观察值和理论值之间的偏差 卡方检验公式 其中:A 为观察值,E为理论值,k为观察值的个数,最后一个式子实际上就是具体计算的方法了 n 为总 ...
- spark机器学习从0到1机器学习工作流 (十一)
一.概念 一个典型的机器学习过程从数据收集开始,要经历多个步骤,才能得到需要的输出.这非常类似于流水线式工作,即通常会包含源数据ETL(抽取.转化.加载),数据预处理,指标提取,模型训练与交叉 ...
- spark机器学习从0到1奇异值分解-SVD (七)
降维(Dimensionality Reduction) 是机器学习中的一种重要的特征处理手段,它可以减少计算过程中考虑到的随机变量(即特征)的个数,其被广泛应用于各种机器学习问题中,用于消除噪声 ...
- spark机器学习从0到1决策树(六)
一.概念 决策树及其集合是分类和回归的机器学习任务的流行方法. 决策树被广泛使用,因为它们易于解释,处理分类特征,扩展到多类分类设置,不需要特征缩放,并且能够捕获非线性和特征交互. 诸如随机森林和 ...
随机推荐
- php函数封装
这是一些自定义封装的函数类,调用起来很方便,以后会有更多的封装函数更新! // 弹框跳转function alert($msg,$url=''){ echo "<script>& ...
- Spring5参考指南:Environment
文章目录 Profiles PropertySource 使用@PropertySource Spring的Environment接口有两个关键的作用:1. Profile, 2.properties ...
- P4768 [NOI2018]归程(kruskal 重构树)
洛谷P4768 [NOI2018]归程 LOJ#2718.「NOI2018」归程 用到 kruskal 重构树,所以先说这是个啥 显然,这和 kruskal 算法有关系 (废话 这个重构树是一个有点权 ...
- 2020年ubuntu1804安装nginx最新稳定版1.16详细教程笔记
第一次使用nginx是2007年,当时主流还是apache.nginx横空出世,在web2.0的推动下,迅速崛起.眼下已是绝对的主流了. 当时,还有一个轻量级的lighttpd,是德国人写,刚开始还并 ...
- Vxlan L3
拓扑图: CE1 <CE1>display current-configuration !Software Version V800R013C00SPC560B560 !Last conf ...
- docker overlay network
下载binary consul wget https://releases.hashicorp.com/consul/1.2.2/consul_1.2.2_linux_amd64.zip unzip ...
- 线段树 扫描线 L - Atlantis HDU - 1542 M - City Horizon POJ - 3277 N - Paint the Wall HDU - 1543
学习博客推荐——线段树+扫描线(有关扫描线的理解) 我觉得要注意的几点 1 我的模板线段树的叶子节点存的都是 x[L]~x[L+1] 2 如果没有必要这个lazy 标志是可以不下传的 也就省了一个pu ...
- WCF学习(二)
WCF通道模型 绑定的本质是一个配置好的通道栈,为了方便程序员专著与业务逻辑,WCF提高了一系列常用绑定.随后会有相应的自定义通道栈代码 无论交互的另一方具体位置在哪里,WCF都会为消息的发送和接收建 ...
- 【漫画】JAVA并发编程之并发模拟工具
原创声明:本文来源于公众号[胖滚猪学编程],转载请注明出处. 上一节[漫画]JAVA并发编程三大Bug源头(可见性.原子性.有序性)我们聊了聊并发编程的三个bug源头,这还没开始进入并发世界,胖滚猪就 ...
- pyhanlp安装教程
1.hanlp简介 HanLP是由一系列模型与算法组成的Java工具包,目标是普及自然语言处理在生产环境中的应用.HanLP具备功能完善.性能高效.架构清晰.语料时新.可自定义的特点. Hanlp具有 ...