O - Layout(差分约束 + spfa)
O - Layout(差分约束 + spfa)
Like everyone else, cows like to stand close to their friends when
queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1…N
standing along a straight line waiting for feed. The cows are standing
in the same order as they are numbered, and since they can be rather
pushy, it is possible that two or more cows can line up at exactly the
same location (that is, if we think of each cow as being located at
some coordinate on a number line, then it is possible for two or more
cows to share the same coordinate).Some cows like each other and want to be within a certain distance of
each other in line. Some really dislike each other and want to be
separated by at least a certain distance. A list of ML (1 <= ML <=
10,000) constraints describes which cows like each other and the
maximum distance by which they may be separated; a subsequent list of
MD constraints (1 <= MD <= 10,000) tells which cows dislike each other
and the minimum distance by which they must be separated.Your job is to compute, if possible, the maximum possible distance
between cow 1 and cow N that satisfies the distance constraints. Input
Line 1: Three space-separated integers: N, ML, and MD.Lines 2…ML+1: Each line contains three space-separated positive
integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at
most D (1 <= D <= 1,000,000) apart.Lines ML+2…ML+MD+1: Each line contains three space-separated positive
integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at
least D (1 <= D <= 1,000,000) apart. Output Line 1: A single integer.
If no line-up is possible, output -1. If cows 1 and N can be
arbitrarily far apart, output -2. Otherwise output the greatest
possible distance between cows 1 and N.
Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
Sample Output
27
Hint Explanation of the sample:
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart,
cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3
dislike each other and must be no fewer than 3 units apart.The best layout, in terms of coordinates on a number line, is to put
cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.
思路
- 差分约束,让求最大答案,把所有给的不等式 转化为" <= " , 跑最短路径
题解(171ms)
#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
#define INF 0x3f3f3f3f
const int maxn = 10005;
const int maxm = 200005;
int n,a,b;
struct Edge
{
int v,w,next;
} edge[maxm];
int head[maxn], dis[maxn];
int use[maxn];
int k = 0;
void Add(int u,int v,int w)
{
edge[++ k] = (Edge){ v, w, head[u]}; head[u] = k;
}
bool Spfa(int s, int e)
{
int cnt[maxn] = {0};
for(int i = 0; i <= n; i ++)
dis[i] = INF;
dis[s] = 0;
queue<int> q;
q.push(s);
int u,v,w;
while(! q.empty())
{
u = q.front(); q.pop();
use[u] = 0;
cnt[u] ++;
if(cnt[u] > n + 1) return false;
for(int i = head[u]; i; i = edge[i].next)
{
v = edge[i].v;
w = edge[i].w;
if(dis[v] > dis[u] + w)
{
dis[v] = dis[u] + w;
if(! use[v])
{
q.push(v);
use[v] = 1;
}
}
}
}
return true;
}
int main()
{
ios::sync_with_stdio(false); cin.tie(0);
//freopen("T.txt","r",stdin);
cin >> n >> a >> b;
int u,v,w;
for(int i = 1; i <= a; i ++)
{
cin >> u >> v >> w;
Add(u, v, w);
}
for(int i = 1; i <= b; i ++)
{
cin >> u >> v >> w;
Add(v, u,-w);
}
if(Spfa(1, n))
{
if(dis[n] == INF) cout << -2 << endl;
else cout << dis[n] << endl;
}
else
cout << -1 << endl;
return 0;
}
//分析:让求的事最大距离 -> 跑最短路
kuangbin的题解(47ms)
/*
POJ 3169 Layout
差分约束+SPFA
*/
//队列实现SPFA,需要有负环回路判断
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
const int MAXN=1010;
const int MAXE=20020;
const int INF=0x3f3f3f3f;
int head[MAXN];//每个结点的头指针
int vis[MAXN];//在队列标志
int cnt[MAXN];//每个点的入队列次数
int que[MAXN];//SPFA循环指针
int dist[MAXN];
struct Edge
{
int to;
int v;
int next;
}edge[MAXE];
int tol;
void add(int a,int b,int v)//加边
{
edge[tol].to=b;
edge[tol].v=v;
edge[tol].next=head[a];
head[a]=tol++;
}
bool SPFA(int start,int n)
{
int front=0,rear=0;
for(int v=1;v<=n;v++)//初始化
{
if(v==start)
{
que[rear++]=v;
vis[v]=true;
cnt[v]=1;
dist[v]=0;
}
else
{
vis[v]=false;
cnt[v]=0;
dist[v]=INF;
}
}
while(front!=rear)
{
int u=que[front++];
vis[u]=false;
if(front>=MAXN)front=0;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(dist[v]>dist[u]+edge[i].v)
{
dist[v]=dist[u]+edge[i].v;
if(!vis[v])
{
vis[v]=true;
que[rear++]=v;
if(rear>=MAXN)rear=0;
if(++cnt[v]>n) return false;
//cnt[i]为入队列次数,用来判断是否存在负环回来
//这条好像放在这个if外面也可以??
}
}
}
}
return true;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
int ML,MD;
int a,b,c;
while(scanf("%d%d%d",&n,&ML,&MD)!=EOF)
{
tol=0;//加边计数,这个不要忘
memset(head,-1,sizeof(head));
while(ML--)
{
scanf("%d%d%d",&a,&b,&c);
if(a>b)swap(a,b);//注意加边顺序
add(a,b,c);
//大-小<=c ,有向边(小,大):c
}
while(MD--)
{
scanf("%d%d%d",&a,&b,&c);
if(a<b)swap(a,b);
add(a,b,-c);
//大-小>=c,小-大<=-c,有向边(大,小):-c
}
if(!SPFA(1,n)) printf("-1\n");//无解
else if(dist[n]==INF) printf("-2\n");
else printf("%d\n",dist[n]);
}
return 0;
}
O - Layout(差分约束 + spfa)的更多相关文章
- POJ-3169 Layout (差分约束+SPFA)
POJ-3169 Layout:http://poj.org/problem?id=3169 参考:https://blog.csdn.net/islittlehappy/article/detail ...
- poj Layout 差分约束+SPFA
题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...
- 【poj3169】【差分约束+spfa】
题目链接http://poj.org/problem?id=3169 题目大意: 一些牛按序号排成一条直线. 有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没 ...
- POJ 3169 Layout(差分约束+链式前向星+SPFA)
描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...
- (简单) POJ 3169 Layout,差分约束+SPFA。
Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...
- poj 3169 Layout(差分约束+spfa)
题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有m ...
- poj3159 差分约束 spfa
//Accepted 2692 KB 1282 ms //差分约束 -->最短路 //TLE到死,加了输入挂,手写queue #include <cstdio> #include & ...
- 【BZOJ】2330: [SCOI2011]糖果(差分约束+spfa)
http://www.lydsy.com/JudgeOnline/problem.php?id=2330 差分约束运用了最短路中的三角形不等式,即d[v]<=d[u]+w(u, v),当然,最长 ...
- BZOJ.4500.矩阵(差分约束 SPFA判负环 / 带权并查集)
BZOJ 差分约束: 我是谁,差分约束是啥,这是哪 太真实了= = 插个广告:这里有差分约束详解. 记\(r_i\)为第\(i\)行整体加了多少的权值,\(c_i\)为第\(i\)列整体加了多少权值, ...
随机推荐
- Java基础篇(02):特殊的String类,和相关扩展API
本文源码:GitHub·点这里 || GitEE·点这里 一.String类简介 1.基础简介 字符串是一个特殊的数据类型,属于引用类型.String类在Java中使用关键字final修饰,所以这个类 ...
- R调用C++示例
sourceCpp {Rcpp}:Source C++ Code from a File or String sourceCpp(file = "", code = NULL, e ...
- Google Flutter Clock 大赛优秀项目推荐
Flutter 在 Google 加持下,如今可以作为跨平台首选了.早在 Flutter 刚刚出现强势苗头,我作为第一批体验了一把,<Flutter 初尝:从 Java 无缝过渡>,不过也 ...
- 学习Shader所需的数学基础(坐标系,点和矢量)
数学对于计算机图形学的重要性是不言而喻的.在学习Shader之前,首先就要打好数学基础,好在入门Unity Shader所需的数学知识都是线性代数中很基础的的内容.按部就班的来,第一篇文章记录总结的是 ...
- Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
将 RCN 中下面 3 个独立模块整合在一起,减少计算量: CNN:提取图像特征 SVM:目标分类识别 Regression 模型:定位 不对每个候选区域独立通过 CN 提取特征,将整个图像通过 CN ...
- Dubbo之服务暴露
前言 本文 Dubbo 使用版本2.7.5 Dubbo 通过使用dubbo:service配置或@service在解析完配置后进行服务暴露,供服务消费者消费. Dubbo 的服务暴露有两种: 远程暴露 ...
- Android开发:通过 webview 将网页打包成安卓应用
商业转载请联系作者获得授权,非商业转载请注明出处. For commercial use, please contact the author for authorization. For non-c ...
- SpringBoot怎么自动部署到内置的Tomcat的?
先看看SpringBoot的主配置类的main方法: main方法运行了一个run()方法,进去run方法看一下: /** * 静态帮助程序,可用于从中运行{@link SpringApplicati ...
- RabbitMQ 在Ubuntu18.04上的安装
1.安装erlang由于rabbitMq需要erlang语言的支持,在安装rabbitMq之前需要安装erlang sudo apt-get install erlang2.安装Rabbitmq更新源 ...
- MySQL----SQL操作
1.什么是SQL? Structured Query Language:结构化查询语言 其实就是定义了操作所有关系型数据库的规则.每一种数据库操作的方式存在不一样的地方,称为“方言”. 2.SQL通用 ...