O - Layout(差分约束 + spfa)

Like everyone else, cows like to stand close to their friends when

queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1…N

standing along a straight line waiting for feed. The cows are standing

in the same order as they are numbered, and since they can be rather

pushy, it is possible that two or more cows can line up at exactly the

same location (that is, if we think of each cow as being located at

some coordinate on a number line, then it is possible for two or more

cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of

each other in line. Some really dislike each other and want to be

separated by at least a certain distance. A list of ML (1 <= ML <=

10,000) constraints describes which cows like each other and the

maximum distance by which they may be separated; a subsequent list of

MD constraints (1 <= MD <= 10,000) tells which cows dislike each other

and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance

between cow 1 and cow N that satisfies the distance constraints. Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2…ML+1: Each line contains three space-separated positive

integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at

most D (1 <= D <= 1,000,000) apart.

Lines ML+2…ML+MD+1: Each line contains three space-separated positive

integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at

least D (1 <= D <= 1,000,000) apart. Output Line 1: A single integer.

If no line-up is possible, output -1. If cows 1 and N can be

arbitrarily far apart, output -2. Otherwise output the greatest

possible distance between cows 1 and N.

Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
Sample Output
27

Hint Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart,

cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3

dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put

cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

思路

  • 差分约束,让求最大答案,把所有给的不等式 转化为" <= " , 跑最短路径

题解(171ms)

#include<iostream>
#include<queue>
#include<cstring>
using namespace std; #define INF 0x3f3f3f3f
const int maxn = 10005;
const int maxm = 200005;
int n,a,b;
struct Edge
{
int v,w,next;
} edge[maxm];
int head[maxn], dis[maxn];
int use[maxn];
int k = 0; void Add(int u,int v,int w)
{
edge[++ k] = (Edge){ v, w, head[u]}; head[u] = k;
} bool Spfa(int s, int e)
{
int cnt[maxn] = {0};
for(int i = 0; i <= n; i ++)
dis[i] = INF;
dis[s] = 0;
queue<int> q;
q.push(s);
int u,v,w;
while(! q.empty())
{
u = q.front(); q.pop();
use[u] = 0;
cnt[u] ++;
if(cnt[u] > n + 1) return false; for(int i = head[u]; i; i = edge[i].next)
{
v = edge[i].v;
w = edge[i].w;
if(dis[v] > dis[u] + w)
{
dis[v] = dis[u] + w;
if(! use[v])
{
q.push(v);
use[v] = 1;
}
}
}
}
return true;
} int main()
{
ios::sync_with_stdio(false); cin.tie(0);
//freopen("T.txt","r",stdin);
cin >> n >> a >> b;
int u,v,w;
for(int i = 1; i <= a; i ++)
{
cin >> u >> v >> w;
Add(u, v, w);
}
for(int i = 1; i <= b; i ++)
{
cin >> u >> v >> w;
Add(v, u,-w);
}
if(Spfa(1, n))
{
if(dis[n] == INF) cout << -2 << endl;
else cout << dis[n] << endl;
}
else
cout << -1 << endl; return 0;
}
//分析:让求的事最大距离 -> 跑最短路

kuangbin的题解(47ms)

/*
POJ 3169 Layout 差分约束+SPFA
*/
//队列实现SPFA,需要有负环回路判断
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std; const int MAXN=1010;
const int MAXE=20020;
const int INF=0x3f3f3f3f;
int head[MAXN];//每个结点的头指针
int vis[MAXN];//在队列标志
int cnt[MAXN];//每个点的入队列次数
int que[MAXN];//SPFA循环指针
int dist[MAXN]; struct Edge
{
int to;
int v;
int next;
}edge[MAXE];
int tol;
void add(int a,int b,int v)//加边
{
edge[tol].to=b;
edge[tol].v=v;
edge[tol].next=head[a];
head[a]=tol++;
}
bool SPFA(int start,int n)
{
int front=0,rear=0;
for(int v=1;v<=n;v++)//初始化
{
if(v==start)
{
que[rear++]=v;
vis[v]=true;
cnt[v]=1;
dist[v]=0;
}
else
{
vis[v]=false;
cnt[v]=0;
dist[v]=INF;
}
}
while(front!=rear)
{
int u=que[front++];
vis[u]=false;
if(front>=MAXN)front=0;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(dist[v]>dist[u]+edge[i].v)
{
dist[v]=dist[u]+edge[i].v;
if(!vis[v])
{
vis[v]=true;
que[rear++]=v;
if(rear>=MAXN)rear=0;
if(++cnt[v]>n) return false;
//cnt[i]为入队列次数,用来判断是否存在负环回来
//这条好像放在这个if外面也可以??
}
}
}
}
return true;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
int ML,MD;
int a,b,c;
while(scanf("%d%d%d",&n,&ML,&MD)!=EOF)
{
tol=0;//加边计数,这个不要忘
memset(head,-1,sizeof(head));
while(ML--)
{
scanf("%d%d%d",&a,&b,&c);
if(a>b)swap(a,b);//注意加边顺序
add(a,b,c);
//大-小<=c ,有向边(小,大):c
}
while(MD--)
{
scanf("%d%d%d",&a,&b,&c);
if(a<b)swap(a,b);
add(a,b,-c);
//大-小>=c,小-大<=-c,有向边(大,小):-c
}
if(!SPFA(1,n)) printf("-1\n");//无解
else if(dist[n]==INF) printf("-2\n");
else printf("%d\n",dist[n]);
}
return 0;
}

O - Layout(差分约束 + spfa)的更多相关文章

  1. POJ-3169 Layout (差分约束+SPFA)

    POJ-3169 Layout:http://poj.org/problem?id=3169 参考:https://blog.csdn.net/islittlehappy/article/detail ...

  2. poj Layout 差分约束+SPFA

    题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...

  3. 【poj3169】【差分约束+spfa】

    题目链接http://poj.org/problem?id=3169 题目大意: 一些牛按序号排成一条直线. 有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没 ...

  4. POJ 3169 Layout(差分约束+链式前向星+SPFA)

    描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

  5. (简单) POJ 3169 Layout,差分约束+SPFA。

    Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...

  6. poj 3169 Layout(差分约束+spfa)

    题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有m ...

  7. poj3159 差分约束 spfa

    //Accepted 2692 KB 1282 ms //差分约束 -->最短路 //TLE到死,加了输入挂,手写queue #include <cstdio> #include & ...

  8. 【BZOJ】2330: [SCOI2011]糖果(差分约束+spfa)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2330 差分约束运用了最短路中的三角形不等式,即d[v]<=d[u]+w(u, v),当然,最长 ...

  9. BZOJ.4500.矩阵(差分约束 SPFA判负环 / 带权并查集)

    BZOJ 差分约束: 我是谁,差分约束是啥,这是哪 太真实了= = 插个广告:这里有差分约束详解. 记\(r_i\)为第\(i\)行整体加了多少的权值,\(c_i\)为第\(i\)列整体加了多少权值, ...

随机推荐

  1. JavaScript对象(三)

    序列化对象: 对象序列化:对象的状态转化为字符串,也可以将字符串还原为对象.方法:JSON.stringify(),用来序列化,JSON.parse(),用来还原对象. JSON(JavaScript ...

  2. Apache Tomcat 文件包含漏洞(CVE-2020-1938)

    2月20日,国家信息安全漏洞共享平台(CNVD)发布了Apache Tomcat文件包含漏洞(CNVD-2020-10487/CVE-2020-1938).该漏洞是由于Tomcat AJP协议存在缺陷 ...

  3. scrapy中间件中使用selenium切换ip

    scrapy抓取一些需要js加载页面时一般要么是通过接口直接获取数据,要么是js加载,但是我通过selenium也可以获取动态页面 但是有个问题,容易给反爬,因为在scrapy中间件mid中使用sel ...

  4. python爬虫的数据库连接问题

    1.需要导的包 import pymysql 2.# mysql连接信息(字典形式) db_config ={ 'host': '127.0.0.1',#连接的主机id(107.0.0.1是本机id) ...

  5. php制作缩略图

    PHP制作缩略图 1.制作缩略图的函数 imagecopyresampled(dest,src,dx,dy,sx,sy,dw,dh,sw,sh) 说明: dest 目标画布 src 原图(要缩略的图片 ...

  6. 【Python】2.19学习笔记 成员运算符,身份运算符,运算符优先级

    成员运算符 暂时不会用,等学链表时再补充 \(in\) 与 \(not in\) \(in\):如果在指定序列中找到指定值,则返回\(true\) \(not in\):如果在指定序列中找到指定值,则 ...

  7. Mybatis总结一之SQL标签方法

    ---恢复内容开始--- 定义:mapper.xml映射文件中定义了操作数据库的sql,并且提供了各种标签方法实现动态拼接sql.每个sql是一个statement,映射文件是mybatis的核心. ...

  8. Java中请优先使用try-with-resources而非try-finally

    Java中请优先使用try-with-resources而非try-finally Java库包含了很多需要手工调用close方法来关闭的资源.比如说InputStream.OutputStream及 ...

  9. shiro拦截所有报 Uncaught SyntaxError: Unexpected token '<' 解决方法

    改成 -> filterChainDefinitionMap.put("/css/**", "anon");filterChainDefinitionMa ...

  10. Hive 时间操作

    Hive 时间转换 UNIX时间戳概念:因为UNIX时间戳只是一个秒数,一个UNIX时间戳在不同时区看来,时间是不同的.如UNIX时间戳0,在0时区看来是1970-01-01 00:00:00,在东八 ...