O - Layout(差分约束 + spfa)
O - Layout(差分约束 + spfa)
Like everyone else, cows like to stand close to their friends when
queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1…N
standing along a straight line waiting for feed. The cows are standing
in the same order as they are numbered, and since they can be rather
pushy, it is possible that two or more cows can line up at exactly the
same location (that is, if we think of each cow as being located at
some coordinate on a number line, then it is possible for two or more
cows to share the same coordinate).Some cows like each other and want to be within a certain distance of
each other in line. Some really dislike each other and want to be
separated by at least a certain distance. A list of ML (1 <= ML <=
10,000) constraints describes which cows like each other and the
maximum distance by which they may be separated; a subsequent list of
MD constraints (1 <= MD <= 10,000) tells which cows dislike each other
and the minimum distance by which they must be separated.Your job is to compute, if possible, the maximum possible distance
between cow 1 and cow N that satisfies the distance constraints. Input
Line 1: Three space-separated integers: N, ML, and MD.Lines 2…ML+1: Each line contains three space-separated positive
integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at
most D (1 <= D <= 1,000,000) apart.Lines ML+2…ML+MD+1: Each line contains three space-separated positive
integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at
least D (1 <= D <= 1,000,000) apart. Output Line 1: A single integer.
If no line-up is possible, output -1. If cows 1 and N can be
arbitrarily far apart, output -2. Otherwise output the greatest
possible distance between cows 1 and N.
Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
Sample Output
27
Hint Explanation of the sample:
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart,
cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3
dislike each other and must be no fewer than 3 units apart.The best layout, in terms of coordinates on a number line, is to put
cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.
思路
- 差分约束,让求最大答案,把所有给的不等式 转化为" <= " , 跑最短路径
题解(171ms)
#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
#define INF 0x3f3f3f3f
const int maxn = 10005;
const int maxm = 200005;
int n,a,b;
struct Edge
{
int v,w,next;
} edge[maxm];
int head[maxn], dis[maxn];
int use[maxn];
int k = 0;
void Add(int u,int v,int w)
{
edge[++ k] = (Edge){ v, w, head[u]}; head[u] = k;
}
bool Spfa(int s, int e)
{
int cnt[maxn] = {0};
for(int i = 0; i <= n; i ++)
dis[i] = INF;
dis[s] = 0;
queue<int> q;
q.push(s);
int u,v,w;
while(! q.empty())
{
u = q.front(); q.pop();
use[u] = 0;
cnt[u] ++;
if(cnt[u] > n + 1) return false;
for(int i = head[u]; i; i = edge[i].next)
{
v = edge[i].v;
w = edge[i].w;
if(dis[v] > dis[u] + w)
{
dis[v] = dis[u] + w;
if(! use[v])
{
q.push(v);
use[v] = 1;
}
}
}
}
return true;
}
int main()
{
ios::sync_with_stdio(false); cin.tie(0);
//freopen("T.txt","r",stdin);
cin >> n >> a >> b;
int u,v,w;
for(int i = 1; i <= a; i ++)
{
cin >> u >> v >> w;
Add(u, v, w);
}
for(int i = 1; i <= b; i ++)
{
cin >> u >> v >> w;
Add(v, u,-w);
}
if(Spfa(1, n))
{
if(dis[n] == INF) cout << -2 << endl;
else cout << dis[n] << endl;
}
else
cout << -1 << endl;
return 0;
}
//分析:让求的事最大距离 -> 跑最短路
kuangbin的题解(47ms)
/*
POJ 3169 Layout
差分约束+SPFA
*/
//队列实现SPFA,需要有负环回路判断
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
const int MAXN=1010;
const int MAXE=20020;
const int INF=0x3f3f3f3f;
int head[MAXN];//每个结点的头指针
int vis[MAXN];//在队列标志
int cnt[MAXN];//每个点的入队列次数
int que[MAXN];//SPFA循环指针
int dist[MAXN];
struct Edge
{
int to;
int v;
int next;
}edge[MAXE];
int tol;
void add(int a,int b,int v)//加边
{
edge[tol].to=b;
edge[tol].v=v;
edge[tol].next=head[a];
head[a]=tol++;
}
bool SPFA(int start,int n)
{
int front=0,rear=0;
for(int v=1;v<=n;v++)//初始化
{
if(v==start)
{
que[rear++]=v;
vis[v]=true;
cnt[v]=1;
dist[v]=0;
}
else
{
vis[v]=false;
cnt[v]=0;
dist[v]=INF;
}
}
while(front!=rear)
{
int u=que[front++];
vis[u]=false;
if(front>=MAXN)front=0;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(dist[v]>dist[u]+edge[i].v)
{
dist[v]=dist[u]+edge[i].v;
if(!vis[v])
{
vis[v]=true;
que[rear++]=v;
if(rear>=MAXN)rear=0;
if(++cnt[v]>n) return false;
//cnt[i]为入队列次数,用来判断是否存在负环回来
//这条好像放在这个if外面也可以??
}
}
}
}
return true;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
int ML,MD;
int a,b,c;
while(scanf("%d%d%d",&n,&ML,&MD)!=EOF)
{
tol=0;//加边计数,这个不要忘
memset(head,-1,sizeof(head));
while(ML--)
{
scanf("%d%d%d",&a,&b,&c);
if(a>b)swap(a,b);//注意加边顺序
add(a,b,c);
//大-小<=c ,有向边(小,大):c
}
while(MD--)
{
scanf("%d%d%d",&a,&b,&c);
if(a<b)swap(a,b);
add(a,b,-c);
//大-小>=c,小-大<=-c,有向边(大,小):-c
}
if(!SPFA(1,n)) printf("-1\n");//无解
else if(dist[n]==INF) printf("-2\n");
else printf("%d\n",dist[n]);
}
return 0;
}
O - Layout(差分约束 + spfa)的更多相关文章
- POJ-3169 Layout (差分约束+SPFA)
POJ-3169 Layout:http://poj.org/problem?id=3169 参考:https://blog.csdn.net/islittlehappy/article/detail ...
- poj Layout 差分约束+SPFA
题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...
- 【poj3169】【差分约束+spfa】
题目链接http://poj.org/problem?id=3169 题目大意: 一些牛按序号排成一条直线. 有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没 ...
- POJ 3169 Layout(差分约束+链式前向星+SPFA)
描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...
- (简单) POJ 3169 Layout,差分约束+SPFA。
Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...
- poj 3169 Layout(差分约束+spfa)
题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有m ...
- poj3159 差分约束 spfa
//Accepted 2692 KB 1282 ms //差分约束 -->最短路 //TLE到死,加了输入挂,手写queue #include <cstdio> #include & ...
- 【BZOJ】2330: [SCOI2011]糖果(差分约束+spfa)
http://www.lydsy.com/JudgeOnline/problem.php?id=2330 差分约束运用了最短路中的三角形不等式,即d[v]<=d[u]+w(u, v),当然,最长 ...
- BZOJ.4500.矩阵(差分约束 SPFA判负环 / 带权并查集)
BZOJ 差分约束: 我是谁,差分约束是啥,这是哪 太真实了= = 插个广告:这里有差分约束详解. 记\(r_i\)为第\(i\)行整体加了多少的权值,\(c_i\)为第\(i\)列整体加了多少权值, ...
随机推荐
- 关于独立部署web项目到tomcat服务器详情
步骤: 1.设置端口号:找到所解压的tomcat的目录下中的conf文件夹,再用editPlus打开conf文件夹中的server.xml文件,tomcat初始端口为8005,8080,8009,如果 ...
- JavaWeb中登录验证码生成
1.页面代码 <html> <head> <title>Title</title> <script type="text/javascr ...
- 汇编语言-[bx]和loop指令和多个段
5.1 [BX]和内存单元的描述 要完成描述一个内存单元,需要两种信息: 内存单元的地址: 可以用 [0] 表示一个内存单元, 0 表示单元的偏移地址,段地址默认在 ds 中: 同样也可以用 [bx] ...
- 必备技能四、ajax及token
转https://segmentfault.com/a/1190000008470355?utm_source=tuicool&utm_medium=referral 转 https://ww ...
- jwt的token如何使用
JWT简介: JWT(JSON WEB TOKEN):JSON网络令牌,JWT是一个轻便的安全跨平台传输格式,定义了一个紧凑的自包含的方式在不同实体之间安全传输信息(JSON格式).它是在Web环境下 ...
- 【01】openLayers 第一个地图
效果: 代码: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <t ...
- IntelliJ IDEA 2018.3 x64的破解和安装
IntelliJ IDEA 2018.3 x64的破解和安装 前言 IntelliJ IDEA 作为一个优秀的Java开发环境,深受许多开发者喜爱,但是它的价格却贵得让人无法接受,这篇文章将介绍永久激 ...
- java之线程中断——interrupt
如下图所示,interrupt()方法并没有成功的中断我们的线程. 为了便于理解,其实可以这样来类比(注意,只是类比,实际情况并不完全是这样):Thread类中有一个boolean的标志域用来表示线程 ...
- 前后端分离基于Oauth2的SSO单点登录怎样做?
一.说明 单点登录顾名思义就是在多个应用系统中,只需要登录一次,就可以访问其他相互信任的应用系统,免除多次登录的烦恼:本文主要介绍跨域间的 前后端分离 项目怎样实现单点登录,并且与 非前后端分离 的差 ...
- vux中表单验证,在提交时自动聚焦到未验证通过的那栏;及循环表单的验证
首先vux中的表单验证在点击触发,失焦时才显示错误信息,如果不管它,它就没反应,这显然是不合理的:解决办法就是:在提交时做验证,不通过的话就使用.focus()及.blur()方法给它聚焦,失焦. i ...