O - Layout(差分约束 + spfa)

Like everyone else, cows like to stand close to their friends when

queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1…N

standing along a straight line waiting for feed. The cows are standing

in the same order as they are numbered, and since they can be rather

pushy, it is possible that two or more cows can line up at exactly the

same location (that is, if we think of each cow as being located at

some coordinate on a number line, then it is possible for two or more

cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of

each other in line. Some really dislike each other and want to be

separated by at least a certain distance. A list of ML (1 <= ML <=

10,000) constraints describes which cows like each other and the

maximum distance by which they may be separated; a subsequent list of

MD constraints (1 <= MD <= 10,000) tells which cows dislike each other

and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance

between cow 1 and cow N that satisfies the distance constraints. Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2…ML+1: Each line contains three space-separated positive

integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at

most D (1 <= D <= 1,000,000) apart.

Lines ML+2…ML+MD+1: Each line contains three space-separated positive

integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at

least D (1 <= D <= 1,000,000) apart. Output Line 1: A single integer.

If no line-up is possible, output -1. If cows 1 and N can be

arbitrarily far apart, output -2. Otherwise output the greatest

possible distance between cows 1 and N.

Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
Sample Output
27

Hint Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart,

cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3

dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put

cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

思路

  • 差分约束,让求最大答案,把所有给的不等式 转化为" <= " , 跑最短路径

题解(171ms)

#include<iostream>
#include<queue>
#include<cstring>
using namespace std; #define INF 0x3f3f3f3f
const int maxn = 10005;
const int maxm = 200005;
int n,a,b;
struct Edge
{
int v,w,next;
} edge[maxm];
int head[maxn], dis[maxn];
int use[maxn];
int k = 0; void Add(int u,int v,int w)
{
edge[++ k] = (Edge){ v, w, head[u]}; head[u] = k;
} bool Spfa(int s, int e)
{
int cnt[maxn] = {0};
for(int i = 0; i <= n; i ++)
dis[i] = INF;
dis[s] = 0;
queue<int> q;
q.push(s);
int u,v,w;
while(! q.empty())
{
u = q.front(); q.pop();
use[u] = 0;
cnt[u] ++;
if(cnt[u] > n + 1) return false; for(int i = head[u]; i; i = edge[i].next)
{
v = edge[i].v;
w = edge[i].w;
if(dis[v] > dis[u] + w)
{
dis[v] = dis[u] + w;
if(! use[v])
{
q.push(v);
use[v] = 1;
}
}
}
}
return true;
} int main()
{
ios::sync_with_stdio(false); cin.tie(0);
//freopen("T.txt","r",stdin);
cin >> n >> a >> b;
int u,v,w;
for(int i = 1; i <= a; i ++)
{
cin >> u >> v >> w;
Add(u, v, w);
}
for(int i = 1; i <= b; i ++)
{
cin >> u >> v >> w;
Add(v, u,-w);
}
if(Spfa(1, n))
{
if(dis[n] == INF) cout << -2 << endl;
else cout << dis[n] << endl;
}
else
cout << -1 << endl; return 0;
}
//分析:让求的事最大距离 -> 跑最短路

kuangbin的题解(47ms)

/*
POJ 3169 Layout 差分约束+SPFA
*/
//队列实现SPFA,需要有负环回路判断
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std; const int MAXN=1010;
const int MAXE=20020;
const int INF=0x3f3f3f3f;
int head[MAXN];//每个结点的头指针
int vis[MAXN];//在队列标志
int cnt[MAXN];//每个点的入队列次数
int que[MAXN];//SPFA循环指针
int dist[MAXN]; struct Edge
{
int to;
int v;
int next;
}edge[MAXE];
int tol;
void add(int a,int b,int v)//加边
{
edge[tol].to=b;
edge[tol].v=v;
edge[tol].next=head[a];
head[a]=tol++;
}
bool SPFA(int start,int n)
{
int front=0,rear=0;
for(int v=1;v<=n;v++)//初始化
{
if(v==start)
{
que[rear++]=v;
vis[v]=true;
cnt[v]=1;
dist[v]=0;
}
else
{
vis[v]=false;
cnt[v]=0;
dist[v]=INF;
}
}
while(front!=rear)
{
int u=que[front++];
vis[u]=false;
if(front>=MAXN)front=0;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(dist[v]>dist[u]+edge[i].v)
{
dist[v]=dist[u]+edge[i].v;
if(!vis[v])
{
vis[v]=true;
que[rear++]=v;
if(rear>=MAXN)rear=0;
if(++cnt[v]>n) return false;
//cnt[i]为入队列次数,用来判断是否存在负环回来
//这条好像放在这个if外面也可以??
}
}
}
}
return true;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
int ML,MD;
int a,b,c;
while(scanf("%d%d%d",&n,&ML,&MD)!=EOF)
{
tol=0;//加边计数,这个不要忘
memset(head,-1,sizeof(head));
while(ML--)
{
scanf("%d%d%d",&a,&b,&c);
if(a>b)swap(a,b);//注意加边顺序
add(a,b,c);
//大-小<=c ,有向边(小,大):c
}
while(MD--)
{
scanf("%d%d%d",&a,&b,&c);
if(a<b)swap(a,b);
add(a,b,-c);
//大-小>=c,小-大<=-c,有向边(大,小):-c
}
if(!SPFA(1,n)) printf("-1\n");//无解
else if(dist[n]==INF) printf("-2\n");
else printf("%d\n",dist[n]);
}
return 0;
}

O - Layout(差分约束 + spfa)的更多相关文章

  1. POJ-3169 Layout (差分约束+SPFA)

    POJ-3169 Layout:http://poj.org/problem?id=3169 参考:https://blog.csdn.net/islittlehappy/article/detail ...

  2. poj Layout 差分约束+SPFA

    题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...

  3. 【poj3169】【差分约束+spfa】

    题目链接http://poj.org/problem?id=3169 题目大意: 一些牛按序号排成一条直线. 有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没 ...

  4. POJ 3169 Layout(差分约束+链式前向星+SPFA)

    描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

  5. (简单) POJ 3169 Layout,差分约束+SPFA。

    Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...

  6. poj 3169 Layout(差分约束+spfa)

    题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有m ...

  7. poj3159 差分约束 spfa

    //Accepted 2692 KB 1282 ms //差分约束 -->最短路 //TLE到死,加了输入挂,手写queue #include <cstdio> #include & ...

  8. 【BZOJ】2330: [SCOI2011]糖果(差分约束+spfa)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2330 差分约束运用了最短路中的三角形不等式,即d[v]<=d[u]+w(u, v),当然,最长 ...

  9. BZOJ.4500.矩阵(差分约束 SPFA判负环 / 带权并查集)

    BZOJ 差分约束: 我是谁,差分约束是啥,这是哪 太真实了= = 插个广告:这里有差分约束详解. 记\(r_i\)为第\(i\)行整体加了多少的权值,\(c_i\)为第\(i\)列整体加了多少权值, ...

随机推荐

  1. 从String到==和hashcode

    public static void main(String[] args) { String s1 = "ni"; String s2 = "hao"; St ...

  2. vue iview modal弹出框 form表单验证

    一.ref="addApply" :model="addApply" :rules="ruleValidate"   不要忘记prop 二. ...

  3. 16 搭建Spring Data JPA的开发环境

    使用Spring Data JPA,需要整合Spring与Spring Data JPA,并且需要提供JPA的服务提供者hibernate,所以需要导入spring相关坐标,hibernate坐标,数 ...

  4. Ajax上传数据和上传文件(三种方式)

    Ajax向后端发送数据可以有三种方式:原生Ajax方式,jQuery Ajax方式,iframe+form 方式(伪造Ajax方式) <!DOCTYPE html> <html la ...

  5. C语言程序设计(八) 数组

    第八章 数组 //L8-1 #include <stdio.h> int main() { int score1, score2, score3, score4, score5; int ...

  6. js 实现简单的导航下拉列表

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  7. Uiautomator1.0与Uiautomator2.0测试项目搭建与运行原理

    Uiautomator是Android原生测试框架,可以用于白盒接口测试也可以用于UI自动化测试,Uiautomator分1.0版本与2.0版本,它们都是基于UiAutomation的测试框架,都是通 ...

  8. 树链剖分与倍增求LCA

    树链剖分与倍增求\(LCA\) 首先我要吐槽机房的辣基供电情况,我之前写了一上午,马上就要完成的时候突然停电,然后\(GG\)成了送链剖分 其次,我没歧视\(tarjan LCA\) 1.倍增求\(L ...

  9. 交换机三种模式Access、Hybrid和Trunk

    [端口介绍] 种链路类型:access.trunk.hybird 个VLAN,一般用于连接计算机端口: Trunk类型端口:可以允许多个VLAN通过,可以接收和发送多个VLAN 报文, 一般用于交换机 ...

  10. Spring Cloud - Nacos注册中心入门单机模式及集群模式

    近几年微服务很火,Spring Cloud提供了为服务领域的一整套解决方案.其中Spring Cloud Alibaba是我们SpringCloud的一个子项目,是提供微服务开发的一站式解决方案. 包 ...