O - Layout(差分约束 + spfa)

Like everyone else, cows like to stand close to their friends when

queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1…N

standing along a straight line waiting for feed. The cows are standing

in the same order as they are numbered, and since they can be rather

pushy, it is possible that two or more cows can line up at exactly the

same location (that is, if we think of each cow as being located at

some coordinate on a number line, then it is possible for two or more

cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of

each other in line. Some really dislike each other and want to be

separated by at least a certain distance. A list of ML (1 <= ML <=

10,000) constraints describes which cows like each other and the

maximum distance by which they may be separated; a subsequent list of

MD constraints (1 <= MD <= 10,000) tells which cows dislike each other

and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance

between cow 1 and cow N that satisfies the distance constraints. Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2…ML+1: Each line contains three space-separated positive

integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at

most D (1 <= D <= 1,000,000) apart.

Lines ML+2…ML+MD+1: Each line contains three space-separated positive

integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at

least D (1 <= D <= 1,000,000) apart. Output Line 1: A single integer.

If no line-up is possible, output -1. If cows 1 and N can be

arbitrarily far apart, output -2. Otherwise output the greatest

possible distance between cows 1 and N.

Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
Sample Output
27

Hint Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart,

cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3

dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put

cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

思路

  • 差分约束,让求最大答案,把所有给的不等式 转化为" <= " , 跑最短路径

题解(171ms)

#include<iostream>
#include<queue>
#include<cstring>
using namespace std; #define INF 0x3f3f3f3f
const int maxn = 10005;
const int maxm = 200005;
int n,a,b;
struct Edge
{
int v,w,next;
} edge[maxm];
int head[maxn], dis[maxn];
int use[maxn];
int k = 0; void Add(int u,int v,int w)
{
edge[++ k] = (Edge){ v, w, head[u]}; head[u] = k;
} bool Spfa(int s, int e)
{
int cnt[maxn] = {0};
for(int i = 0; i <= n; i ++)
dis[i] = INF;
dis[s] = 0;
queue<int> q;
q.push(s);
int u,v,w;
while(! q.empty())
{
u = q.front(); q.pop();
use[u] = 0;
cnt[u] ++;
if(cnt[u] > n + 1) return false; for(int i = head[u]; i; i = edge[i].next)
{
v = edge[i].v;
w = edge[i].w;
if(dis[v] > dis[u] + w)
{
dis[v] = dis[u] + w;
if(! use[v])
{
q.push(v);
use[v] = 1;
}
}
}
}
return true;
} int main()
{
ios::sync_with_stdio(false); cin.tie(0);
//freopen("T.txt","r",stdin);
cin >> n >> a >> b;
int u,v,w;
for(int i = 1; i <= a; i ++)
{
cin >> u >> v >> w;
Add(u, v, w);
}
for(int i = 1; i <= b; i ++)
{
cin >> u >> v >> w;
Add(v, u,-w);
}
if(Spfa(1, n))
{
if(dis[n] == INF) cout << -2 << endl;
else cout << dis[n] << endl;
}
else
cout << -1 << endl; return 0;
}
//分析:让求的事最大距离 -> 跑最短路

kuangbin的题解(47ms)

/*
POJ 3169 Layout 差分约束+SPFA
*/
//队列实现SPFA,需要有负环回路判断
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std; const int MAXN=1010;
const int MAXE=20020;
const int INF=0x3f3f3f3f;
int head[MAXN];//每个结点的头指针
int vis[MAXN];//在队列标志
int cnt[MAXN];//每个点的入队列次数
int que[MAXN];//SPFA循环指针
int dist[MAXN]; struct Edge
{
int to;
int v;
int next;
}edge[MAXE];
int tol;
void add(int a,int b,int v)//加边
{
edge[tol].to=b;
edge[tol].v=v;
edge[tol].next=head[a];
head[a]=tol++;
}
bool SPFA(int start,int n)
{
int front=0,rear=0;
for(int v=1;v<=n;v++)//初始化
{
if(v==start)
{
que[rear++]=v;
vis[v]=true;
cnt[v]=1;
dist[v]=0;
}
else
{
vis[v]=false;
cnt[v]=0;
dist[v]=INF;
}
}
while(front!=rear)
{
int u=que[front++];
vis[u]=false;
if(front>=MAXN)front=0;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(dist[v]>dist[u]+edge[i].v)
{
dist[v]=dist[u]+edge[i].v;
if(!vis[v])
{
vis[v]=true;
que[rear++]=v;
if(rear>=MAXN)rear=0;
if(++cnt[v]>n) return false;
//cnt[i]为入队列次数,用来判断是否存在负环回来
//这条好像放在这个if外面也可以??
}
}
}
}
return true;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
int ML,MD;
int a,b,c;
while(scanf("%d%d%d",&n,&ML,&MD)!=EOF)
{
tol=0;//加边计数,这个不要忘
memset(head,-1,sizeof(head));
while(ML--)
{
scanf("%d%d%d",&a,&b,&c);
if(a>b)swap(a,b);//注意加边顺序
add(a,b,c);
//大-小<=c ,有向边(小,大):c
}
while(MD--)
{
scanf("%d%d%d",&a,&b,&c);
if(a<b)swap(a,b);
add(a,b,-c);
//大-小>=c,小-大<=-c,有向边(大,小):-c
}
if(!SPFA(1,n)) printf("-1\n");//无解
else if(dist[n]==INF) printf("-2\n");
else printf("%d\n",dist[n]);
}
return 0;
}

O - Layout(差分约束 + spfa)的更多相关文章

  1. POJ-3169 Layout (差分约束+SPFA)

    POJ-3169 Layout:http://poj.org/problem?id=3169 参考:https://blog.csdn.net/islittlehappy/article/detail ...

  2. poj Layout 差分约束+SPFA

    题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...

  3. 【poj3169】【差分约束+spfa】

    题目链接http://poj.org/problem?id=3169 题目大意: 一些牛按序号排成一条直线. 有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没 ...

  4. POJ 3169 Layout(差分约束+链式前向星+SPFA)

    描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

  5. (简单) POJ 3169 Layout,差分约束+SPFA。

    Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...

  6. poj 3169 Layout(差分约束+spfa)

    题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有m ...

  7. poj3159 差分约束 spfa

    //Accepted 2692 KB 1282 ms //差分约束 -->最短路 //TLE到死,加了输入挂,手写queue #include <cstdio> #include & ...

  8. 【BZOJ】2330: [SCOI2011]糖果(差分约束+spfa)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2330 差分约束运用了最短路中的三角形不等式,即d[v]<=d[u]+w(u, v),当然,最长 ...

  9. BZOJ.4500.矩阵(差分约束 SPFA判负环 / 带权并查集)

    BZOJ 差分约束: 我是谁,差分约束是啥,这是哪 太真实了= = 插个广告:这里有差分约束详解. 记\(r_i\)为第\(i\)行整体加了多少的权值,\(c_i\)为第\(i\)列整体加了多少权值, ...

随机推荐

  1. win10查看本机mac地址的详细操作

    今天和大家分享win10查看本机mac地址的方法,mac地址是什么东西?MAC地址实际上就是网卡的一个标识,和身份证号码类似,大多数情况下是不需要关心MAC地址是多少的,一般不能改动,所以也不会重复. ...

  2. volatile关键字的理解

    volatile是java语言提供的一种稍弱的同步机制,它的作用是能够保证被volatile修饰的变量,每个线程在获取它的值时都能获取到最新的值. 要理解这个原理首先要知道java内存模型:每个线程都 ...

  3. 日常破解--XCTF easy_apk

    一.题目来源     来源:XCTF社区安卓题目easy_apk 二.破解思路     1.首先运行一下给的apk,发现就一个输入框和一个按钮,随便点击一下,发现弹出Toast验证失败.如下图所示: ...

  4. Redis(9)——史上最强【集群】入门实践教程

    一.Redis 集群概述 Redis 主从复制 到 目前 为止,我们所学习的 Redis 都是 单机版 的,这也就意味着一旦我们所依赖的 Redis 服务宕机了,我们的主流程也会受到一定的影响,这当然 ...

  5. Anaconda3环境下安装OpenCV(cv2)

    Anaconda3环境下安装OpenCV(cv2) 主要步骤 1 首先查看自己的Anaconda安装的python版本 2 下载相应的OpenCv.whl文件 3 使用cmd安装.whl文件 查看自己 ...

  6. .net 4.0 以下HttpWebRequest Header 修改hosts方法

    .net 4.0 以下HttpWebRequest Header 修改hosts方法 特此记录 public class CusteredHeaderCollection : WebHeaderCol ...

  7. 有关KMP算法

    KMP算法: 此算法的本质是首先对于模板字符串进行计算,生成一个数组(next数组),该数组反映了模板字符串的情况. 例: S: ABADACABABCD P: ABAB 当我们查询到P3与S3(B和 ...

  8. Natas31 Writeup(Perl 远程命令执行)

    Natas31: 源码如下: my $cgi = CGI->new; if ($cgi->upload('file')) { my $file = $cgi->param('file ...

  9. 基于 HTML5 WebGL 与 GIS 的智慧机场大数据可视化分析【转载】

    前言:大数据,人工智能,工业物联网,5G 已经或者正在潜移默化地改变着我们的生活.在信息技术快速发展的时代,谁能抓住数据的核心,利用有效的方法对数据做数据挖掘和数据分析,从数据中发现趋势,谁就能做到精 ...

  10. AspNetCore3.1_Secutiry源码解析_8_Authorization_授权框架

    目录 AspNetCore3.1_Secutiry源码解析_1_目录 AspNetCore3.1_Secutiry源码解析_2_Authentication_核心流程 AspNetCore3.1_Se ...