The Lost House
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions: 2203   Accepted: 906

Description

One day a snail climbed up to a big tree and finally came to the end of a branch. What a different feeling to look down from such a high place he had never been to before! However, he was very tired due to the long time of climbing, and fell asleep. An unbelievable thing happened when he woke up ---- he found himself lying in a meadow and his house originally on his back disappeared! Immediately he realized that he fell off the branch when he was sleeping! He was sure that his house must still be on the branch he had been sleeping on. The snail began to climb the tree again, since he could not live without his house.

When reaching the first fork of the tree, he sadly found that he could not remember the route that he climbed before. In order to find his lovely house, the snail decided to go to the end of every branch. It was dangerous to walk without the protection of the house, so he wished to search the tree in the best way.

Fortunately, there lived many warm-hearted worms in the tree that could accurately tell the snail whether he had ever passed their places or not before he fell off.

Now our job is to help the snail. We pay most of our attention to two parts of the tree ---- the forks of the branches and the ends of the branches, which we call them key points because key events always happen there, such as choosing a path, getting the help from a worm and arriving at the house he is searching for.

Assume all worms live at key points, and all the branches between two neighboring key points have the same distance of 1. The snail is now at the first fork of the tree.

Our purpose is to find a proper route along which he can find his house as soon as possible, through the analysis of the structure of the tree and the locations of the worms. The only restriction on the route is that he must not go down from a fork until he has reached all the ends grown from this fork.

The house may be left at the end of any branches in an equal probability. We focus on the mathematical expectation of the distance the snail has to cover before arriving his house. We wish the value to be as small as possible.

As illustrated in Figure-1, the snail is at the key point 1 and his house is at a certain point among 2, 4 and 5. A worm lives at point 3, who can tell the snail whether his house is at one of point 4 and 5 or not. Therefore, the snail can choose two strategies. He can go to point 2 first. If he cannot find the house there, he should go back to point 1, and then reaches point 4 (or 5) by point 3. If still not, he has to return point 3, then go to point 5 (or 4), where he will undoubtedly find his house. In this choice, the snail covers distances of 1, 4, 6 corresponding to the circumstances under which the house is located at point 2, 4 (or 5), 5 (or 4) respectively. So the expectation value is (1 + 4 + 6) / 3 = 11 / 3. Obviously, this strategy does not make full use of the information from the worm. If the snail goes to point 3 and gets useful information from the worm first, and then chooses to go back to point 1 then towards point 2, or go to point 4 or 5 to take his chance, the distances he covers will be 2, 3, 4 corresponding to the different locations of the house. In such a strategy, the mathematical expectation will be (2 + 3 + 4) / 3 = 3, and it is the very route along which the snail should search the tree.

Input

The input contains several sets of test data. Each set begins with a line containing one integer N, no more than 1000, which indicates the number of key points in the tree. Then follow N lines describing the N key points. For convenience, we number all the key points from 1 to N. The key point numbered with 1 is always the first fork of the tree. Other numbers may be any key points in the tree except the first fork. The i-th line in these N lines describes the key point with number i. Each line consists of one integer and one uppercase character 'Y' or 'N' separated by a single space, which represents the number of the previous key point and whether there lives a worm ('Y' means lives and 'N' means not). The previous key point means the neighboring key point in the shortest path between this key point and the key point numbered 1. In the above illustration, the previous key point of point 2 or 3 is point 1, while the previous key point of point 4 or 5 is point 3. This integer is -1 for the key point 1, means it has no previous key point. You can assume a fork has at most eight branches. The first set in the sample input describes the above illustration.

A test case of N = 0 indicates the end of input, and should not be processed.

Output

Output one line for each set of input data. The line contains one float number with exactly four digits after the decimal point, which is the mathematical expectation value.

Sample Input

5
-1 N
1 N
1 Y
3 N
3 N
10
-1 N
1 Y
1 N
2 N
2 N
2 N
3 N
3 Y
8 N
8 N
6
-1 N
1 N
1 Y
1 N
3 N
3 N
0

Sample Output

3.0000
5.0000
3.5000
题意:有一只蜗牛丢了壳现在要爬树找回来,这棵树上有些地方有善良的虫子告诉它,它的壳是不是在这枝桠上,现在不知道壳在哪个叶节点上,问怎么选择走的顺序,平均长度期望最小,输出平均长度期望
思路:
0.1 看到这个期望,必须发现的是过程只要不除以叶节点数就可以过程中不出现浮点数,只计算某种最优路径选择,使得分别到达各点的所需长度之和最短即可,
0.2 首先看去掉虫子的影响来看这棵树,我们知道树的问题的一大特点就是把整棵树换成各子树和根节点之间的某种运算
1 怎么样把走多次树变成走一次树呢?(如果要是走n次铁定就超时了),仔细看看树,如果选择先走某枝桠,这棵树上的叶节点有两种可能,A:在这个枝桠上,B:不在这个枝桠上,
B:当我们选择了先走这棵枝桠的时候就必须走一遍这棵枝桠的每一个节点,(假设没虫)于是我们设这个长度为bak(back)[i],对于子节点j,bak[i]=sigma(bak[j]+2)
A:不断重复选择先走那一只子节点,一直走到叶节点为止,所花费的时间是之前走过的无用枝桠长度(+从根节点到达那些子节点的长度)+到达这个叶节点不返回的长度,可是这个只对于叶节点有意义,对于非叶节点,我们设scan[i]为遍历到所有它的子叶节点,从i点出发的所有路径长度之总和(的最小值),设i的子节点为j,k,j是现在要走的节点,k是已经走过的节点,scan[i]=sigma(lef[j]*(1(出发到子节点的步数+sigma(bak[k]+2)(前面多走的路+往返这些子节点))+scan[j](遍历这些j上的子节点))
对于叶节点,明显bak[i]=scan[i]=0 2 现在算是有确定了遍历顺序时的计算公式了,可是怎么确定遍历子节点的顺序呢?对于外部,只有scan[i]重要,所以子节点的顺序要使scan[i]最小,排列的话肯定超时,只能用贪心了
任取两个节点j1,j2,假设j1在j2前面的scan[i]=S1,j2在j1前面的scan[i]=S2,S1-S2=(lef[j1]*(bak[j2]+2)-lef[j2]*(bak[j1]+2)),整理一下,要让这个值小于零,应该有lef[j1]/(bak[j1]+2)小于lef[j2]/(bak[j2]+2),这时候j1更优,显然按这个值增序排序就可以确定选取顺序了 3 现在加上虫子的影响,如果有虫的话虫子会告诉蜗牛不用经过这个点,也即bak[i]=0 错误次数:5
原因: 1 bak[s]+=bak[son]+2;忘了+2,测试数据太弱没测出来 2 double ans=(double)scan[1]/(double )lef[1];直接除以lef了 3 lef没有memset 4 弃疗随便交
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int maxn=1002;
long long scan[maxn],bak[maxn];
int lef[maxn];
bool worm[maxn];
int len[maxn];
int e[maxn][maxn];
int n;
char buff[2];
typedef pair<double,int> P;
void dfs(int s){
if(len[s]==0){
scan[s]=bak[s]=0;
lef[s]=1;
return ;
}
priority_queue<P,vector<P>,greater<P> >que;
for(int i=0;i<len[s];i++){
dfs(e[s][i]);
lef[s]+=lef[e[s][i]];
}
for(int i=0;i<len[s];i++){
que.push(P((double)(bak[e[s][i]]+2)/(double )lef[e[s][i]],e[s][i]));
}
int son,sum=0;
for(int i=1;!que.empty();i++){
long long tmp=que.top().first;
son=que.top().second;que.pop();
sum+=lef[son];
scan[s]+=scan[son]+lef[son]+(2+bak[son])*(lef[s]-sum);
bak[s]+=bak[son]+2;
}
if(worm[s]) bak[s]=0;
} int main(){
while(scanf("%d",&n)==1&&n){
memset(len,0,sizeof(len));
memset(worm,0,sizeof(worm));
memset(scan,0,sizeof(scan));
memset(bak,0,sizeof(bak));
memset(lef,0,sizeof(lef));
for(int i=1;i<=n;i++){
int f;
scanf("%d%s",&f,buff);
if(f>0){
e[f][len[f]++]=i;
}
if(buff[0]=='Y')worm[i]=true;
}
dfs(1);
double ans=(double)scan[1]/(double )lef[1];
printf("%.4f\n",ans);
}
return 0;
}

  

POJ 2057 The Lost Home 树形dp 难度:2的更多相关文章

  1. POJ 3140.Contestants Division 基础树形dp

    Contestants Division Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10704   Accepted:  ...

  2. POJ:2342-Anniversary party(树形dp入门题目)

    传送门:http://poj.org/problem?id=2342 Anniversary party Time Limit: 1000MS Memory Limit: 65536K Descrip ...

  3. 树的点分治 (poj 1741, 1655(树形dp))

    poj 1655:http://poj.org/problem?id=1655 题意: 给无根树,  找出以一节点为根,  使节点最多的树,节点最少. 题解:一道树形dp,先dfs 标记 所有节点的子 ...

  4. poj 2342 Anniversary party 简单树形dp

    Anniversary party Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3862   Accepted: 2171 ...

  5. POJ 1155 TELE 背包型树形DP 经典题

    由电视台,中转站,和用户的电视组成的体系刚好是一棵树 n个节点,编号分别为1~n,1是电视台中心,2~n-m是中转站,n-m+1~n是用户,1为root 现在节点1准备转播一场比赛,已知从一个节点传送 ...

  6. poj 3140 Contestants Division(树形dp? dfs计数+枚举)

    本文出自   http://blog.csdn.net/shuangde800 ------------------------------------------------------------ ...

  7. POJ 3140 Contestants Division 【树形DP】

    <题目链接> 题目大意:给你一棵树,让你找一条边,使得该边的两个端点所对应的两颗子树权值和相差最小,求最小的权值差. 解题分析: 比较基础的树形DP. #include <cstdi ...

  8. UVa 10859 - Placing Lampposts 树形DP 难度: 2

    题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...

  9. Uva LA 3902 - Network 树形DP 难度: 0

    题目 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_pr ...

随机推荐

  1. Windows10 蓝屏 DRIVER_IRQL_NOT_LESS_OR_EQUAL (vfilter.sys)的可能解决方法

    早上我的笔记本从休眠中开机的时候突然出现了蓝屏,这个蓝屏在前几天出现过了.两次提示的终止代码都一样.我的笔记本型号是DELL XPS15 9560 我的笔记本配置: 类别 型号 内存 16GB DDR ...

  2. RS(纠删码)技术浅析及Python实现

    前言 在Ceph和RAID存储领域,RS纠删码扮演着重要的角色,纠删码是经典的时间换空间的案例,通过更多的CPU计算,降低低频存储数据的存储空间占用. 纠删码原理 纠删码基于范德蒙德矩阵实现,核心公式 ...

  3. IDEA Java开发常用插件

    这里只是推荐一下好用的插件,具体的使用方法就不一一详细介绍了. JRebel for IntelliJ 一款热部署插件,只要不是修改了项目的配置文件,用它都可以实现热部署.收费的,破解比较麻烦.不过功 ...

  4. Python3基础 lambda 简单示例

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...

  5. Django组件(二) Django之Form

    Forms组件概述 forms组件 -Django提供的用语数据校验和模板渲染的组件 -在项目中创建一个py文件 -1 写一个类继承Form -2 在类中写属性,写的属性,就是要校验的字段 -3 使用 ...

  6. CSS布局总结及实际应用中产生的问题

    布局初步 所谓布局,其实是指的将网页内容以一定的方式放到合适的位置上去. 布局的基本步骤: 1, 将“当前版面”以视觉上界限明显的方式进行划分若干个区块,划分只用两种方式: a) 上下结构:此时,只要 ...

  7. 误把Linux运行级别设置为6后的解决方法【转】

    本文转载自:http://www.wuji8.com/meta/841011126.html 误把Linux运行级别设置为6后的解决方法     我们知道,Linux有7个运行级别,而运行级别设置为6 ...

  8. P3939 数颜色

    目录 题目 思路1(待修莫队) 思路2(vector+二分) 代码1 代码2 题目 P3939 数颜色 思路1(待修莫队) 哇,这不是莫队模板题吗 3e5,TLE45分 不行 我有信仰啊 pow(n, ...

  9. 【附7】turbine

    一.作用 聚集同一个微服务的相同的commandKey.Threadpool.commandGroupKey数据进行聚合 二.配置 1.集群(cluster)(turbine聚集数据的粒度) turb ...

  10. Codeforces Round #429 (Div. 2)

    A. Generous Kefa   One day Kefa found n baloons. For convenience, we denote color of i-th baloon as  ...