项亮老师在其所著的《推荐系统实战》中写道:

第2章 利用用户行为数据
2.2.2 用户活跃度和物品流行度的关系
【仅仅基于用户行为数据设计的推荐算法一般称为协同过滤算法。学术界对协同过滤算法进行了深入研究,提出了很多方法,比如
基于领域的方法(neighborhood-based)、
隐语义模型(latent factor model)、
基于图的随机游走算法(random walk on graph)等。
 
在这些方法中,最著名的、在业界得到最广泛的算法是基于领域的方法。而基于领域的方法主要包含下面两种算法:
  •  基于用户的协同过滤算法(这种算法给用户推荐和他兴趣相似的其他用户喜欢的物品。)
  • 基于物品的协同过滤算法(这种算法给用户推荐和他之前喜欢的物品相似的物品。)
 

协同过滤推荐基于这样的假设:为用户找到他真正感兴趣的内容的方法是,首先找与他兴趣相似的用户,然后将这些用户感兴趣的东西推荐给该用户。所以该推荐技术最大的优点是对推荐对象没有特殊的要求,能处理非结构化的复杂对象,如音乐、电影等,并能发现用户潜在的兴趣点。协同过滤推荐算法主要是利用用户对项目的评分数据,通过相似邻居查询,找出与当前用户兴趣最相似的用户群,根据这些用户的兴趣偏好为当前用户提供最可能感兴趣的项目推荐列表。为更进一步地说明协同过滤推荐算法的推荐原理,本文以用户对电影的推荐为例进行阐述。表1 是用户对电影评分数据的一个简单矩阵的例子,其中每一行代表一个用户,每一列代表一部电影,矩阵中的元素表示用户对所看电影的评分,评分值一般是从1到5 的整数,评分值越大表明用户喜欢该电影。

对表1 中的数据利用协同过滤推荐算法,系统查找到用户Alice、Bob 和Chris 具有相似的兴趣爱好,因为他们对后3 部电影的评分相同,那么系统会推荐电影Snow white 给Chris,因为与其兴趣偏好相似的用户Alice 和Bob 对该电影的评分值较高。在表2 中,对于新用户Amy,没有评分信息,根据协同过滤推荐算法,无法根据评分信息查找与其兴趣偏好相似的用户,所以系统无法为该用户推荐电影,同样对于新电影Shrek,因缺乏评分信息系统无法感知它的存在,所以也无法将其推荐出去。这就是协同过滤推荐算法所存在的新用户和新项目问题。

【Reference】

1. 《推荐系统实战》

2.  CSDN上关于MF的两个总结:(但是这两个博文关于CF和MF和LFM三者关系的归纳并不太准确)

推荐系统中的矩阵分解总结(https://blog.csdn.net/qq_19446965/article/details/82079367?tdsourcetag=s_pctim_aiomsg

推荐系统:协同过滤collaborative filtering(https://blog.csdn.net/pipisorry/article/details/51788955/?tdsourcetag=s_pctim_aiomsg

RS:关于协同过滤,矩阵分解,LFM隐语义模型三者的区别的更多相关文章

  1. LFM 隐语义模型

    隐语义模型: 物品       表示为长度为k的向量q(每个分量都表示  物品具有某个特征的程度) 用户兴趣 表示为长度为k的向量p(每个分量都表示  用户对某个特征的喜好程度) 用户u对物品i的兴趣 ...

  2. LFM隐语义模型Latent Factor Model

    实际应用 LFM 模型在实际使用中有一个困难,就是很难实现实时推荐.经典的 LFM 模型每次训练都需要扫描所有的用户行为记录,并且需要在用户行为记录上反复迭代来优化参数,所以每次训练都很耗时,实际应用 ...

  3. 海量数据挖掘MMDS week4: 推荐系统之隐语义模型latent semantic analysis

    http://blog.csdn.net/pipisorry/article/details/49256457 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  4. 推荐系统| ② 离线推荐&基于隐语义模型的协同过滤推荐

    一.离线推荐服务 离线推荐服务是综合用户所有的历史数据,利用设定的离线统计算法和离线推荐算法周期性的进行结果统计与保存,计算的结果在一定时间周期内是固定不变的,变更的频率取决于算法调度的频率. 离线推 ...

  5. 隐语义模型LFM

      隐语义模型是通过隐含特征,联系用户和物品,基于用户的特征对物品进行自动聚类,然后在用户感兴趣的类中选择物品推荐给用户. 对于推荐系统,常用的算法: USER-CF:给用户推荐和他兴趣相似的用户喜欢 ...

  6. 推荐系统--隐语义模型LFM

    主要介绍 隐语义模型 LFM(latent factor model). 隐语义模型最早在文本挖掘领域被提出,用于找到文本的隐含语义,相关名词有 LSI.pLSA.LDA 等.在推荐领域,隐语义模型也 ...

  7. 【转载】使用LFM(Latent factor model)隐语义模型进行Top-N推荐

    最近在拜读项亮博士的<推荐系统实践>,系统的学习一下推荐系统的相关知识.今天学习了其中的隐语义模型在Top-N推荐中的应用,在此做一个总结. 隐语义模型LFM和LSI,LDA,Topic ...

  8. 使用LFM(Latent factor model)隐语义模型进行Top-N推荐

    最近在拜读项亮博士的<推荐系统实践>,系统的学习一下推荐系统的相关知识.今天学习了其中的隐语义模型在Top-N推荐中的应用,在此做一个总结. 隐语义模型LFM和LSI,LDA,Topic ...

  9. 浅谈隐语义模型和非负矩阵分解NMF

    本文从基础介绍隐语义模型和NMF. 隐语义模型 ”隐语义模型“常常在推荐系统和文本分类中遇到,最初来源于IR领域的LSA(Latent Semantic Analysis),举两个case加快理解. ...

随机推荐

  1. 代码提示级别设置 inspection

    配置文件 profile [ˈproʊfaɪl] n.侧面; 外形,轮廓; 人物简介; vt.描-的轮廓; 给-画侧面图; inspection [ɪnˈspɛkʃən] n.检验; 检查; 视察; ...

  2. Elasticsearch 入门教程

    全文搜索属于最常见的需求,开源的 Elasticsearch (以下简称 Elastic)是目前全文搜索引擎的首选. 它可以快速地储存.搜索和分析海量数据.维基百科.Stack Overflow.Gi ...

  3. 基于Bootstrap+jQuery.validate Form表单验证实践

    基于Bootstrap jQuery.validate Form表单验证实践 项目结构 :     github 上源码地址:https://github.com/starzou/front-end- ...

  4. PHP优化---opcache的配置说明

    [opcache] zend_extension = "G:/PHP/php-5.5.6-Win32-VC11-x64/ext/php_opcache.dll" ; Zend Op ...

  5. windows 查看动态连接库和静态连接库的方法

    在window下查看动态库的导出函数可以用vs自带的Dependenc工具: 查看静态库的信息要用命令行来实现: dumpbin   /LINKERMEMBER   Test.lib   >   ...

  6. linux性能分析工具集(图示)

  7. ps叠加模式笔记

    1.叠加模式:Overlay混色模式会让图层白色的部分去加亮底色,图层深色的部分去加暗底色 2.常见按钮:1)主体渐变:2)投影:3)内阴影:颜色减淡,按钮颜色,距离1,大小3:4)外发光,正片叠底,

  8. RobotFramework+Selenium2+Appium环境搭建

    转载:https://www.cnblogs.com/testway/p/7372326.html 装python 2.7 RobotFramework是python2 写的,图形界面使用的wxpyt ...

  9. php 字符串中的\n换行符无效、不能换行的解决方法

    php 字符串中的\n换行符无效.不能换行的解决方法 程序的中的换行符\n会直接输出,无法正确换行,解决方法是把单引号改为双引号 aa

  10. openfiler在esxi下的安装配置

    注意分区的时候如果硬盘太小自动分区会导致分配的卷大小不够用 后改为如下: 以root登录: 应该以openfiler登录,口令是password 也可以导入虚拟机安装 升级虚拟机硬件版本 终端登录用户 ...