一:神经网络

  技术起源于上世纪五、六十年代,当时叫感知机(perceptron),包含有输入层、输出层和一个隐藏层。输入的特征向量通过隐藏层变换到达输出层,由输出层得到分类结果。但早期的单层感知机存在一个严重的问题——它对稍微复杂一些的函数都无能为力(如异或操作)。直到上世纪八十年代才被Hition、Rumelhart等人发明的多层感知机克服,就是具有多层隐藏层的感知机。

多层感知机可以摆脱早期离散传输函数的束缚,使用sigmoid或tanh等连续函数模拟神经元对激励的响应,在训练算法上则使用Werbos发明的反向传播BP算法。这就是现在所说的神经网络NN。

神经网络的层数直接决定了它对现实的刻画能力——利用每层更少的神经元拟合更加复杂的函数。但问题出现了——随着神经网络层数的加深,优化函数越来越容易陷入局部最优解,并且这个“陷阱”越来越偏离真正的全局最优。利用有限数据训练的深层网络,性能还不如较浅层网络。同时,另一个不可忽略的问题是随着网络层数增加,“梯度消失”现象更加严重。(具体来说,我们常常使用sigmoid作为神经元的输入输出函数。对于幅度为1的信号,在BP反向传播梯度时,每传递一层,梯度衰减为原来的0.25。层数一多,梯度指数衰减后低层基本上接受不到有效的训练信号。)

2006年,Hition提出了深度学习的概念,引发了深度学习的热潮。具体是利用预训练的方式缓解了局部最优解的问题,将隐藏层增加到了7层,实现了真正意义上的“深度”。

二:DNN形成

为了克服梯度消失,ReLU、maxout等传输函数代替了sigmoid,形成了如今DNN的基本形式。结构跟多层感知机一样,如下图所示:

我们看到全连接DNN的结构里下层神经元和所有上层神经元都能够形成连接,从而导致参数数量膨胀。假设输入的是一幅像素为1K*1K的图像,隐含层有1M个节点,光这一层就有10^12个权重需要训练,这不仅容易过拟合,而且极容易陷入局部最优。

三:CNN形成(convolutional neural network)(卷积神经网络)

由于图像中存在固有的局部模式(如人脸中的眼睛、鼻子、嘴巴等),所以将图像处理和神将网络结合引出卷积神经网络CNN。CNN是通过卷积核将上下层进行链接,同一个卷积核在所有图像中是共享的,图像通过卷积操作后仍然保留原先的位置关系。

通过一个例子简单说明卷积神经网络的结构。假设我们需要识别一幅彩色图像,这幅图像具有四个通道ARGB(透明度和红绿蓝,对应了四幅相同大小的图像),假设卷积核大小为100*100,共使用100个卷积核w1到w100(从直觉来看,每个卷积核应该学习到不同的结构特征)。

用w1在ARGB图像上进行卷积操作,可以得到隐含层的第一幅图像;这幅隐含层图像左上角第一个像素是四幅输入图像左上角100*100区域内像素的加权求和,以此类推。

同理,算上其他卷积核,隐含层对应100幅“图像”。每幅图像对是对原始图像中不同特征的响应。按照这样的结构继续传递下去。CNN中还有max-pooling等操作进一步提高鲁棒性。

注意到最后一层实际上是一个全连接层,在这个例子里,我们注意到输入层到隐藏层的参数瞬间降低到了100*100*100=10^6个!这使得我们能够用已有的训练数据得到良好的模型。题主所说的适用于图像识别,正是由于CNN模型限制参数了个数并挖掘了局部结构的这个特点。顺着同样的思路,利用语音语谱结构中的局部信息,CNN照样能应用在语音识别中。

四:RNN形成(recurrent neural neitwork)(循环神经网络)

DNN无法对时间序列上的变化进行建模。然而,样本出现的时间顺序对于自然语言处理、语音识别、手写体识别等应用非常重要。为了适应这种需求,就出现了大家所说的另一种神经网络结构——循环神经网络RNN。雷锋网

在普通的全连接网络或CNN中,每层神经元的信号只能向上一层传播,样本的处理在各个时刻独立,因此又被成为前向神经网络(Feed-forward Neural Networks)。而在RNN中,神经元的输出可以在下一个时间段直接作用到自身,即第i层神经元在m时刻的输入,除了(i-1)层神经元在该时刻的输出外,还包括其自身在(m-1)时刻的输出!表示成图就是这样的:

为方便分析,按照时间段展开如下图所示:

(t+1)时刻网络的最终结果O(t+1)是该时刻输入和所有历史共同作用的结果!这就达到了对时间序列建模的目的。RNN可以看成一个在时间上传递的神经网络,它的深度是时间的长度!正如我们上面所说,“梯度消失”现象又要出现了,只不过这次发生在时间轴上。

所以RNN存在无法解决长时依赖的问题。为解决上述问题,提出了LSTM(长短时记忆单元),通过cell门开关实现时间上的记忆功能,并防止梯度消失,LSTM单元结构如下图所示:

除了DNN、CNN、RNN、ResNet(深度残差)、LSTM之外,还有很多其他结构的神经网络。如因为在序列信号分析中,如果我能预知未来,对识别一定也是有所帮助的。因此就有了双向RNN、双向LSTM,同时利用历史和未来的信息。

事实上,不论是哪种网络,他们在实际应用中常常都混合着使用,比如CNN和RNN在上层输出之前往往会接上全连接层,很难说某个网络到底属于哪个类别。不难想象随着深度学习热度的延续,更灵活的组合方式、更多的网络结构将被发展出来。

参考链接:https://www.leiphone.com/news/201702/ZwcjmiJ45aW27ULB.html

简单总结如下:

CNN、RNN、DNN的更多相关文章

  1. [转帖]CNN、RNN、DNN的一般解释

    CNN.RNN.DNN的一般解释 https://www.jianshu.com/p/bab3bbddb06b?utm_campaign=maleskine&utm_content=note& ...

  2. NLP教程(5) - 语言模型、RNN、GRU与LSTM

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-det ...

  3. 学习笔记TF017:自然语言处理、RNN、LSTM

    自然语言处理 (NLP)问题都是序列化的.前馈神经网络,在单次前馈中对到来数据处理,假定所有输入独立,模式丢失.循环神经网络(recurrent neural network,RNN)对时间显式建模神 ...

  4. [转]什么是CNN、RNN、LSTM

    . 全连层 每个神经元输入: 每个神经元输出: (通过一个激活函数) 2. RNN(Recurrent Neural Network) 与传统的神经网络不通,RNN与时间有关. 3. LSTM(Lon ...

  5. CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?

    https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...

  6. CNN(卷积神经网络)、RNN(循环神经网络)和DNN(深度神经网络)

    本文转载修改自:知乎-科言君 感知机(perceptron) 神经网络技术起源于上世纪五.六十年代,当时叫感知机(perceptron),拥有输入层.输出层和一个隐含层.输入的特征向量通过隐含层变换达 ...

  7. PaddlePaddle︱开发文档中学习情感分类(CNN、LSTM、双向LSTM)、语义角色标注

    PaddlePaddle出教程啦,教程一部分写的很详细,值得学习. 一期涉及新手入门.识别数字.图像分类.词向量.情感分析.语义角色标注.机器翻译.个性化推荐. 二期会有更多的图像内容. 随便,帮国产 ...

  8. [转] 图解Seq2Seq模型、RNN结构、Encoder-Decoder模型 到 Attention

    from : https://caicai.science/2018/10/06/attention%E6%80%BB%E8%A7%88/ 一.Seq2Seq 模型 1. 简介 Sequence-to ...

  9. TensorFlow之RNN:堆叠RNN、LSTM、GRU及双向LSTM

    RNN(Recurrent Neural Networks,循环神经网络)是一种具有短期记忆能力的神经网络模型,可以处理任意长度的序列,在自然语言处理中的应用非常广泛,比如机器翻译.文本生成.问答系统 ...

随机推荐

  1. java操作Excel之POI(6)使用POI实现使用模板批量添加数据

    action是用struts2写的:前端界面easyUI写的, 前端: <!DOCTYPE html> <html> <head> <meta charset ...

  2. String intern()方法详解

    执行以下代码 String a1=new String("abc");       String a2=new String("abc");       Sys ...

  3. [UE4]运行时UMG组件跟随鼠标的逻辑:拖拽UMG组件(蓝图)

    转自:http://aigo.iteye.com/blog/2279860 UMG - Mouse screen position problem https://forums.unrealengin ...

  4. (转)linux查找技巧: find grep xargs

    在当前目录下所有.cpp文件中查找efg函数 find . -name "*.cpp" | xargs grep 'efg' xargs展开find获得的结果,使其作为grep的参 ...

  5. 关于javascript的cookie的封装

    /******************cookie*********************/ /* cookie的组成部分: 名称:唯一值,不区分大小写,必须经过URL编码 值:必须经过URL编码 ...

  6. 让“懒惰” Linux 运维工程师事半功倍的 10 个关键技巧!

    好的Linux运维工程师区分在效率上.如果一位高效的Linux运维工程师能在 10 分钟内完成一件他人需要 2 个小时才能完成的任务,那么他应该受到奖励(得到更多报酬),因为他为公司节约了时间,而时间 ...

  7. 开启saltstack的web界面

    saltstack官方有提供一个web界面叫halite,halite是用cherrypy web框架开发的,连接后端的saltstack api,web界面虽然简单点,但功能还算齐全,今天就来开启s ...

  8. (6/24) 插件配置:轻松配置JS文件压缩

    实际开发中,在项目上线之前,我们编写的js代码是需要进行压缩的,我们可以采取压缩软件或者在线进行压缩,这不是我们的重点,在webpack中实现JS代码的压缩才是本节的核心. 通过webpack中可实现 ...

  9. 《GPU高性能编程CUDA实战》附录二 散列表

    ▶ 使用CPU和GPU分别实现散列表 ● CPU方法 #include <stdio.h> #include <time.h> #include "cuda_runt ...

  10. 39. 拼接表字段b.day

    var fun = ABS_LOADBEAN("com.plug.FunctionHelper");//var v_div = fun.funHelper.strAdd(" ...