RSA原理说明

长度,建议至少1024。模数n(常取默认65537)两边都要用。
指数e,和n一起就是公钥。
指数d,和n一起就是私钥。
质数p和q用于生成密钥对,然后就丢弃不公开。
一。密钥对的生成步骤
1、随机选择两个不相等的质数p和q。
2、计算p和q的乘积n。
3、计算p-1和q-1的乘积m。
4、随机选个整数e,e与m要互质,且0<e<m。
5、计算e的模反元素d。
6、n,e组成公钥,n,d组成私钥。
用公钥(n, e)加密:明文e ≡ 密文 (mod n)
用私钥(n, d)解密:密文d ≡ 明文 (mod n)
上述表达式是同余式,也就是“≡”两边mod n是相等的。mod运算就是取被除数 / 除数得到的余数,运算符是%。比如5%3=2。所以上式也可表达成
用公钥(n, e)加密:密文 = 明文e % n
用私钥(n, d)解密:明文 = 密文d % n
一。
| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| i mod 4 | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 |
| i mod 7 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |
(a % 4)是以4为周期在循环,(a % 7)是以7为周期在循环,而且数对(a % 4, a % 7)在这个[0,21]之间并没有出现重复,也就是说由(a % 4, a % 7)可以确定a的值
如果n个数互质,且乘积为P,有一个未知数M,已知M分别除以n个数的余数,那个在0<M<P的范围内,可以确定唯一的M值。
二。
13 * 77 = 1001 => 1001 % 1000 = 1
=> 1001 ≡ 1 (mod 1000)
=> a * 1001 ≡ a (mod 1000)
就是说任何数乘以1001除以1000得到余数是本身。因此:
(a * 1001) % 1000 = (a * 13 * 77) % 1000 = ((a * 13) % 1000) * 77) % 1000
理解一下就能发现,我们并不需要知道a * 13的积是多少,而是知道它除以1000的余数就行了,因为反正最后都是要模1000,那事先拿一部分来模1000并不影响结果。
除法类似,两个数乘积除以另一个数,那事先用一个乘数除以除数,得到的值再乘以另一个乘数再除,并不影响结果。这个思想,也是RSA用来当被模数过大时优化计算力的算法。
你心想三位数,乘以13,告诉我乘积的后三位数,我就能知道你想的是哪个数!
假如你想的是233,233*13=3029,所以你告诉我的是029,我只要把29*77=2233,积的后三位数233就是你心想的数。
这里就有点非对称的影子了,(1000, 13)就是公钥,(1000, 77)就是私钥。
3.费马小定理

☆ p = 3
22 - 1 = 3, 24 - 1 = 15 = 3×5, 26 - 1 = 63 = 3×21, 28 - 1 = 255 = 3×85, 210 - 1 = 1023 = 3×341, ...
费马指数:2, 4, 6, 8, 10, ......
☆ p = 5
24 - 1 = 15 = 5×3, 28 - 1 = 255 = 5×51, 212 - 1 = 4095 = 5×819, 216 - 1 = 65535 = 5×13107, ...
费马指数:4, 8, 12, 16, ......
☆ p = 7
23 - 1 = 7 = 7×1, 26 - 1 = 63 = 7×9, 29 - 1 = 511 = 7×73, 212 - 1 = 4095 = 7×585, ...
费马指数:3, 6, 9, 12, ......
☆ p = 11
210 - 1 = 1023 = 11×93, 220 - 1 = 1048575 = 11×95325, 230 - 1 = 1073741823 = 11×797612893, ...
费马指数:10, 20, 30, ......
参考:
https://toutiao.io/posts/u6ehd/preview
图片:http://introcs.cs.princeton.edu/java/99crypto/
RSA原理说明的更多相关文章
- RSA原理及生成步骤
摘自:http://www.ruanyifeng.com/blog/2013/06/rsa_algorithm_part_one.html(可到原网址查看秘钥生成原理) RSA算法原理(一) 因为它是 ...
- RSA原理、ssl认证、Tomcat中配置数字证书以及网络传输数据中的密码学知识
情形一:接口的加.解密与加.验签 rsa不是只有加密解密,除此外还有加签和验签.之前一直误以为加密就是加签,解密就是验签.这是错误的! 正确的理解是: 数据传输的机密性:公钥加密私钥解密是密送,保 ...
- RSA - 原理、特点(加解密及签名验签)及公钥和私钥的生成
Wiki - RSA加密演算法 Wiki - 欧拉函数 Wiki - 模反元素 ASN.1 格式标准 RSA算法原理(二) 注意: RSA 加密或签名后的结果是不可读的二进制,使用时经常会转为 BAS ...
- 转: RSA原理 阮一峰的博客
转:http://www.ruanyifeng.com/blog/2013/06/rsa_algorithm_part_one.html 讲的非常细致,易懂.
- 数字签名中公钥和私钥是什么?对称加密与非对称加密,以及RSA的原理
http://baijiahao.baidu.com/s?id=1581684919791448393&wfr=spider&for=pc https://blog.csdn.net/ ...
- (转)对称加密与非对称加密,以及RSA的原理
一 概述 二对称加密和非对称加密 对称加密 非对称加密 区别 三RSA原理 整数运算 同余运算 当模数为合数n时 当模数为质数p的时候 离散对数问题 RSA原理 一 , 概述 在现代密码学诞生以前,就 ...
- Windows phone应用开发[19]-RSA数据加密
在这个系列的第十六章节中Windows phone应用开发[16]-数据加密 中曾详细讲解过windows phone 常用的MD5,HMAC_MD5,DES,TripleDES[3DES] 数据加密 ...
- RSA算法详解
1.RSA加密算法是最常用的非对称加密算法 2.RSARSA以它的三个发明者Ron Rivest, Adi Shamir, Leonard Adleman的名字首字母命名, 3.目前学术界无法证明RS ...
- RSA加解密算法以及密钥格式
RSA算法: 有个文章关于RSA原理讲的不错: https://blog.csdn.net/dbs1215/article/details/48953589 http://www.ruanyifeng ...
随机推荐
- 自己搭建CDN服务器静态内容加速-LuManager CDN使用教程
为什么要自己来搭建一个CDN服务器实现网站访问加速?一是免费CDN服务稳定性和加速效果都不怎么行:二是用国内的付费CDN服务价格贵得要死,一般的草根站长无法承受:三是最现实的问题国内的CDN要求域名B ...
- MVC的路由设置【转】
转,MVC的路由设置. 后端获取路由里面action的参数,函数需要设置相同的参数名称才行. routes.MapRoute( "Default", "{controll ...
- secureCRT使用退格键(backspace)出现^H解决办法
解决办法步骤如下: 选项--->会话选项---> 把下面两个打个钩就行了. 原文地址:http://skykiss.blog.51cto.com/blog/2892603/769771 另 ...
- SQL - 只获取小时
--时间小时加减 SELECT DATEADD(HOUR, -8, GETDATE()) FROM [Order] --使用convert转换时间格式获取小时,并转成int类型 SELECT CONV ...
- 【.netcore学习】.netcore添加到 supervisor 守护进程自启动报错
配置 supervisor [program:HelloWebApp] command=dotnet run directory=/home/python/dotnet/myweb/mywebapi ...
- 【技术分享会】 iOS开发简述
前言 Objective-C(简称OC)也是面向对象的编程语言,运用的许多面向对象的编程思想和C# . Java .C++等变成语言都是相通的: 本次技术讲座主要讲一些设计模式.设计思想等计算机语言通 ...
- 【大数据系列】hadoop命令指导官方文档翻译
Hadoop Commands Guide Overview Shell Options Generic Options User Commands archive checknative class ...
- 原生js--cookie操作的封装
封装cookie的操作:查询cookie个数.查询所有cookie的键.获取cookie.设置cookie.删除cookie.清除全部cookie /** * cookieStorage */func ...
- Python3.6的组件numpy的安装
安装numpy,scipy,scikit-learn,matplotlib 下载地址:https://www.lfd.uci.edu/~gohlke/pythonlibs/ 我的版本是win10+py ...
- source.android.google && developer.android.google
https://source.android.google.cn/ https://developer.android.google.cn/ https://source.android.com/co ...