Spark的一大好处就是可以通过增加机器数量并使用集群模式运行,来扩展计算能力。Spark可以在各种各样的集群管理器(Hadoop YARN , Apache Mesos , 还有Spark自带的独立集群管理器)上运行,所以Spark应用既能够适应专用集群,又能用于共享的云计算环境。

  • Spark运行时架构

Spark在分布式环境中的架构如下图:

  在分布式环境下,Spark集群采用的是主/从结构。在Spark集群,驱动器节点负责中央协调,调度各个分布式工作节点。执行器节点是工作节点,作为独立的Java进行运行,可以和大量的执行器节点进行通信,作为独立的Java进程运行。驱动器节点和所有的执行器节点一起被称为一个Spark应用。

  Spark应用通过一个叫做集群管理器的外部服务在集群上的机器上启动。Spark自动的集群管理器称为独立集群管理器。Spark也能运行在Hadoop YARN和Apache Mesos两大开源集群管理器上。

  详细说明驱动器节点和执行器节点的作用:

1、驱动器节点

Spark驱动器是执行程序中main()方法的进程。它执行用户编写的用来创建SparkContext ,创建RDD,以及进行RDD转化操作和行动操作的代码。

驱动器进程在Spark应用中有以下两个职责:

  • 把用户程序转为任务

Spark驱动器程序负责把用户程序转为多个物理执行的单元,这些单元称为任务。任务是Spark中最小的工作单元,用户程序通常要启动成百上千的独立任务。

  • 为执行器节点调度任务

Spark驱动器在各执行器进程间协调任务的调度,驱动器进程对应用中所有的执行器节点有完整的记录。每个执行器节点代表一个能够处理任务和存储RDD数据的进程。

2、执行器节点

Spark执行器节点是一种工作进程,负责在Spark作业中运行任务,任务间相互独立。执行器节点在Spark应用启动时启动,伴随着整个Spark应用的生命周期而存在。

执行器节点负责运行组成Spark应用的任务,并将结果返回给驱动器进程。

执行器节点通过自身的块管理器为用户程序中要求缓存的RDD提供内存式存储。

  • spark-submit部署应用

使用Spark提供的统一脚本spark-submit将应用提交到集群管理器上。

spark-submit提供了各种选项可以控制应用每次运行的各项细节。这些选项分为两类:第一类是调度信息,比如你希望为作业申请的资源量。第二类是应用的运行时依赖,比如需要部署到所有工作节点的库和文件。

spark-submit的一般格式:

  bin/spark-submit [options]  <app jar | python file>  [app options]

[options]是要传给spark-submit的标记列表,运行spark-submit --help 可以列出所有可以接收的标记。

<app jar | python file>表示包含应用入口的JAR包或Python脚本。

[app options]是传给应用的选项。

spark-submit一些常用的标记如下:

  • 使用Maven依赖
<properties>
<scala.version>2.10.4</scala.version>
<spark.version>1.6.3</spark.version>
<hadoop.version>2.6.0</hadoop.version>
</properties> <dependencies>
<!-- scala -->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-compiler</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-reflect</artifactId>
<version>${scala.version}</version>
</dependency> <!-- spark -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>${spark.version}</version>
</dependency> <!-- hive -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.10</artifactId>
<version>${spark.version}</version>
</dependency> <!-- hadoop -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop.version}</version>
</dependency> <!-- JDBC -->
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.35</version>
</dependency>
</dependencies>
  •   Spark应用内与应用间调度

在调度多用户集群时,Spark主要依赖集群管理器来在Saprk应用间共享资源。Spark内部的公平调度器会让长期运行的应用定义调度任务的优先级队列。

Spark学习笔记5:Spark集群架构的更多相关文章

  1. Redis学习笔记八:集群模式

    作者:Grey 原文地址:Redis学习笔记八:集群模式 前面提到的Redis学习笔记七:主从复制和哨兵只能解决Redis的单点压力大和单点故障问题,接下来要讲的Redis Cluster模式,主要是 ...

  2. ZooKeeper学习笔记一:集群搭建

    作者:Grey 原文地址:ZooKeeper学习笔记一:集群搭建 说明 单机版的zk安装和运行参考:https://zookeeper.apache.org/doc/r3.6.3/zookeeperS ...

  3. spark学习笔记总结-spark入门资料精化

    Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用. ...

  4. rabbitmq系统学习(三)集群架构

    RabbitMQ集群架构模式 主备模式 实现RabbitMQ的高可用集群,一般在并发和数据量不高的情况下,这种模型非常的好用且简单.主备模式也称为Warren模式 HaProxy配置 listen r ...

  5. spark学习1(hadoop集群搭建)

    把原先搭建的集群环境给删除了,自己重新搭建了一次,将笔记整理在这里,方便自己以后查看 第一步:安装主节点spark1 第一个节点:centos虚拟机安装,全名spark1,用户名hadoop,密码12 ...

  6. spark学习5(hbase集群搭建)

    第一步:Hbase安装 hadoop,zookeeper前面都安装好了 将hbase-1.1.3-bin.tar.gz上传到/usr/HBase目录下 [root@spark1 HBase]# chm ...

  7. redis 学习笔记(6)-cluster集群搭建

    上次写redis的学习笔记还是2014年,一转眼已经快2年过去了,在段时间里,redis最大的变化之一就是cluster功能的正式发布,以前要搞redis集群,得借助一致性hash来自己搞shardi ...

  8. Hadoop学习笔记—13.分布式集群中节点的动态添加与下架

    开篇:在本笔记系列的第一篇中,我们介绍了如何搭建伪分布与分布模式的Hadoop集群.现在,我们来了解一下在一个Hadoop分布式集群中,如何动态(不关机且正在运行的情况下)地添加一个Hadoop节点与 ...

  9. Spark学习笔记-使用Spark History Server

    在运行Spark应用程序的时候,driver会提供一个webUI给出应用程序的运行信息,但是该webUI随着应用程序的完成而关闭端口,也就是 说,Spark应用程序运行完后,将无法查看应用程序的历史记 ...

  10. 开源流媒体服务器SRS学习笔记(4) - Cluster集群方案

    单台服务器做直播,总归有单点风险,利用SRS的Forward机制 + Edge Server设计,可以很容易搭建一个大规模的高可用集群,示意图如下 源站服务器集群:origin server clus ...

随机推荐

  1. 框架流程图绘制工具OmniGraffle 7 for Mac

    1.官网下载地址 https://www.omnigroup.com/omnigraffle 2.激活方法 Omnigraffle Pro 7注册码/许可证 名字:Appked 序列号:MFWG-GH ...

  2. 解决tensorflow的"Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA Using TensorFlow backend."警告问题

    问题描述 程序开始运行的时候报出警告:I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructio ...

  3. Centos编译Unix网络编程(第三版)卷1的源代码

    测试环境:Centos 1)在shell中输入./configure然后按回车(注意先让configure有执行权限 chomd 777 configure) 2)依次进入lib.libfree.li ...

  4. zookeeper windows 下配置和基础命令

    原文链接:http://blog.csdn.net/woshioosm/article/details/45560177 1, 解压zookeeper ,在目录下建立文件夹 data 和log 2,在 ...

  5. hello1与hello2在glassfish上部署

    部署hello1 打开项目实例 找到hello1(tutorial-examples-master\web\jsf\hello1) 并在当前目录打开cmd并输入mvn install命令在hello1 ...

  6. Comet OJ - Contest #2简要题解

    Comet OJ - Contest #2简要题解 前言: 我没有小裙子,我太菜了. A 因自过去而至的残响起舞 https://www.cometoj.com/contest/37/problem/ ...

  7. MySQL--查询表统计信息

    ============================================================= 可以用show table status 来查看表的信息,如:show ta ...

  8. nginx php 配置

    nginx php 环境的搭建步骤: 1.nginx 配置: server { listen       4446; server_name  localhost; location / { root ...

  9. Bloom Filter(布隆过滤器)的概念和原理

    Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数.将hash函数对应的值的位数组置1,查找时 ...

  10. FastAdmin 插件的 Git 开发流程(简明)

    FastAdmin 插件的 Git 开发流程(简明) cms zip 安装 包安装 删除 addons 里的 cms 使用 mklink 软链接到 cms 插件 Git 仓库 修改 cms 插件 gi ...