POJ   1743

Description

A musical melody is represented as a sequence of N (1<=N<=20000)notes that are integers in the range 1..88, each representing a key on the piano. It is unfortunate but true that this representation of melodies ignores the notion of musical timing; but, this programming task is about notes and not timings. 
Many composers structure their music around a repeating &qout;theme&qout;, which, being a subsequence of an entire melody, is a sequence of integers in our representation. A subsequence of a melody is a theme if it:

  • is at least five notes long
  • appears (potentially transposed -- see below) again somewhere else in the piece of music
  • is disjoint from (i.e., non-overlapping with) at least one of its other appearance(s)

Transposed means that a constant positive or negative value is added to every note value in the theme subsequence. 
Given a melody, compute the length (number of notes) of the longest theme. 
One second time limit for this problem's solutions! 

Input

The input contains several test cases. The first line of each test case contains the integer N. The following n integers represent the sequence of notes. 
The last test case is followed by one zero. 

Output

For each test case, the output file should contain a single line with a single integer that represents the length of the longest theme. If there are no themes, output 0.

Sample Input

30
25 27 30 34 39 45 52 60 69 79 69 60 52 45 39 34 30 26 22 18
82 78 74 70 66 67 64 60 65 80
0

Sample Output

5

Hint

Use scanf instead of cin to reduce the read time.

题意:有N(1 <= N <=20000)个音符的序列来表示一首乐曲,每个音符都是1..88范围内的整数,现在要找一个重复的主题。“主题”是整个音符序列的一个子串,它需要满足如下条件:

1.长度至少为5个音符。

2.在乐曲中重复出现。(可能经过转调,“转调”的意思是主题序列中每个音符都被加上或减去了同一个整数值)

3.重复出现的同一主题不能有公共部分。

思路:后缀数组。求出任意相邻音符的差值,最后一个填充0,然后把问题转化为 不可重叠最长重复子串,用后缀数组来做。先二分答案,把题目变成判定性问题:判断是否存在两个长度为k的子串是相同的,且不重叠。解决这个问题的关键还是利用 height数组。把排序后的后缀分成若干组,其中每组的后缀之间的height值都不小于k。
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#define rep(i,n) for(int i = 0;i < n; i++)
using namespace std;
const int size=,INF=<<;
int rk[size],sa[size],height[size],w[size],wa[size],res[size];
int N;
void getSa (int len,int up) {
int *k = rk,*id = height,*r = res, *cnt = wa;
rep(i,up) cnt[i] = ;
rep(i,len) cnt[k[i] = w[i]]++;
rep(i,up) cnt[i+] += cnt[i];
for(int i = len - ; i >= ; i--) {
sa[--cnt[k[i]]] = i;
}
int d = ,p = ;
while(p < len){
for(int i = len - d; i < len; i++) id[p++] = i;
rep(i,len) if(sa[i] >= d) id[p++] = sa[i] - d;
rep(i,len) r[i] = k[id[i]];
rep(i,up) cnt[i] = ;
rep(i,len) cnt[r[i]]++;
rep(i,up) cnt[i+] += cnt[i];
for(int i = len - ; i >= ; i--) {
sa[--cnt[r[i]]] = id[i];
}
swap(k,r);
p = ;
k[sa[]] = p++;
rep(i,len-) {
if(sa[i]+d < len && sa[i+]+d <len &&r[sa[i]] == r[sa[i+]]&& r[sa[i]+d] == r[sa[i+]+d])
k[sa[i+]] = p - ;
else k[sa[i+]] = p++;
}
if(p >= len) return ;
d *= ,up = p, p = ;
}
} void getHeight(int len) {
rep(i,len) rk[sa[i]] = i;
height[] = ;
for(int i = ,p = ; i < len - ; i++) {
int j = sa[rk[i]-];
while(i+p < len&& j+p < len&& w[i+p] == w[j+p]) {
p++;
}
height[rk[i]] = p;
p = max(,p - );
}
} int getSuffix(int s[]) {
int len =N,up = ;
for(int i = ; i < len; i++) {
w[i] = s[i];
up = max(up,w[i]);
}
w[len++] = ;
getSa(len,up+);
getHeight(len);
return len;
} bool valid(int len)
{
int i = , ma, mi;
while()
{
while(i <= N && height[i] < len) i ++;
if(i > N) break;
ma = sa[i-];
mi = sa[i-];
while(i <= N && height[i] >= len)
{
ma = max(ma, sa[i]);
mi = min(mi, sa[i]);
i ++;
}
if(ma - mi >= len) return true;
}
return false;
}
int main()
{
int s[size];
while(scanf("%d",&N)!=EOF)
{
if(!N) return ;
for(int i=;i<N;i++)
{
scanf("%d",&s[i]);
}
for(int i=;i<N-;i++)
{
s[i]=s[i+]-s[i]+;
}
s[N-]=;
getSuffix(s);
int low = , high = (N-)/, mid;
while(low < high)
{
mid = (low + high + ) / ;
if(valid(mid)) {
low = mid;
}else {
high = mid - ;
}
}
int ans = low < ? : low + ;
if(N<) ans=;
printf("%d\n", ans);
}
}
 

后缀数组---Musical Theme的更多相关文章

  1. POJ1743 Musical Theme [后缀数组]

    Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 27539   Accepted: 9290 De ...

  2. POJ 1743 Musical Theme (后缀数组,求最长不重叠重复子串)(转)

    永恒的大牛,kuangbin,膜拜一下,Orz 链接:http://www.cnblogs.com/kuangbin/archive/2013/04/23/3039313.html Musical T ...

  3. POJ 1743 Musical Theme 后缀数组 最长重复不相交子串

    Musical ThemeTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=1743 Description ...

  4. 【POJ1743】Musical Theme(后缀数组)

    [POJ1743]Musical Theme(后缀数组) 题面 洛谷,这题是弱化版的,\(O(n^2)dp\)能过 hihoCoder 有一点点区别 POJ 多组数据 题解 要求的是最长不可重叠重复子 ...

  5. POJ1743 Musical Theme [后缀数组+分组/并查集]

    Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 27539   Accepted: 9290 De ...

  6. POJ 1743 Musical Theme 【后缀数组 最长不重叠子串】

    题目冲鸭:http://poj.org/problem?id=1743 Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Su ...

  7. poj 1743 Musical Theme(最长重复子串 后缀数组)

    poj 1743 Musical Theme(最长重复子串 后缀数组) 有N(1 <= N <=20000)个音符的序列来表示一首乐曲,每个音符都是1..88范围内的整数,现在要找一个重复 ...

  8. poj 1743 Musical Theme (后缀数组+二分法)

    Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16162   Accepted: 5577 De ...

  9. POJ1743 Musical Theme —— 后缀数组 重复出现且不重叠的最长子串

    题目链接:https://vjudge.net/problem/POJ-1743 Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Tot ...

随机推荐

  1. 阿里前DBA的故事

    别人怎么享受生活,与你无关.你怎么磨砺与你有头.引用同事周黄江的一句话,很多人努力程度还远没有到拼天赋的时候. 成功的人都是那种目标很明确的人.对于文中厨师的经历很感兴趣.不管是IT还是餐饮,哪个行业 ...

  2. Mesos源码分析

    Mesos源码分析(1): Mesos的启动过程总论 Mesos源码分析(2): Mesos Master的启动之一 Mesos源码分析(3): Mesos Master的启动之二 Mesos源码分析 ...

  3. UE4在Android调用Project Tango

    Project Tango应该说是Google一试水AR的设备,其中Project Tango主要二个功能,一个是获取深度信息,如MS的Kinect,有相当多的设备都有这个功能,二是第一人称相对定位, ...

  4. android 九宫加密记事本

    自己写的超级安全记事本,用PBEWithMD5AndDES加密sqlite内容几乎无法破解, 九宫点密码登录, 支持备份到SDcard,email,network drivers etc. 附件Apk ...

  5. 点击弹出 +1放大效果 -- jQuery插件

    20140110更新: <!doctype html> <html> <head> <meta charset="UTF-8"> & ...

  6. Equals Finalize GetHashCode GetType MemberwiseClone ReferenceEquals ToString String.IsInterned

    参考资料: http://blog.csdn.net/afgasdg/article/details/6889383 http://www.cnblogs.com/skyivben/archive/2 ...

  7. mvc 分页视图 js 失效

    MVC的分页视图确实是好东西,比ajax直观,可是联动后 之前绑定的js事件失效,所以我们在绑定的时候,要注意使用jquery的 动态绑定功能 最常见的用法应该是 select 的 change 事件 ...

  8. [LeetCode] Remove Invalid Parentheses

    This problem can be solved very elegantly using BFS, as in this post. The code is rewritten below in ...

  9. 微信、qq时间格式模板

    产品近来蛋疼,时间格式从做完到现在改了四遍了 ,最新的要求如下: * 2分钟内 无显示 * 2分钟-24小时 HH:mm * 昨天 昨天 HH:mm * 前天 前天 HH:mm * 今年 MM:DD ...

  10. DiskGenius无损调整分区大小

    一般情况下,调整分区的大小,通常都涉及到两个或两个以上的分区.比如,要想将某分区的大小扩大,通常还要同时将另一个分区的大小缩小:要想将某个分区的大小缩小,则通常还要同时将另一个分区的大小扩大.    ...