[Educational Codeforces Round 16]D. Two Arithmetic Progressions

试题描述

You are given two arithmetic progressions: a1k + b1 and a2l + b2. Find the number of integers x such that L ≤ x ≤ R andx = a1k' + b1 = a2l' + b2, for some integers k', l' ≥ 0.

输入

The first line contains integer n (1 ≤ n ≤ 3·105) — the number of points on the line.

The second line contains n integers xi ( - 109 ≤ xi ≤ 109) — the coordinates of the given n points.

输出

Print the only integer x — the position of the optimal point on the line. If there are several optimal points print the position of the leftmost one. It is guaranteed that the answer is always the integer.

输入示例

     

输出示例


数据规模及约定

解一下不定方程 a1k + b1a2l + b2,设 k mod lcm(a1, a2) / a1 的值是 t,设 lcm(a1, a2) / a1 = A,那么 k 可以写成 q·A + t 这个样子,那么显然 A 是有上下界的,我们二分到这个上下界,做个差就是答案了。

一上午就调它了。。。woc cf 数据太强了

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std; #define MAXN 1000+10 #define oo 4000000000ll
#define LL long long
#define LD long double
LL a1, b1, a2, b2, L, R; LL gcd(LL a, LL b, LL& x, LL& y) {
if(b == 0){ x = 1, y = 0; return a; }
LL d = gcd(b, a % b, y, x); y -= (a / b) * x;
return d;
} LL gcd(LL a, LL b) { return b == 0 ? a : gcd(b, a % b); } int main() {
cin >> a1 >> b1 >> a2 >> b2 >> L >> R; LL k, t;
LL d = gcd(a1, a2, k, t);
if((b2 - b1) % d != 0) return puts("0"), 0;
k *= (b2 - b1) / d; t *= (b2 - b1) / d;
LL A2 = a2 / gcd(a1, a2);
LL mod = (k % A2 + A2) % A2, al, ar;
// printf("%lld %lld\n", k, mod);
LL l, r; l = -oo - 1; r = oo + 1;
// printf("%lld %lld\n", l, r);
while(l < r) {
LL mid = l + (r - l) / 2;
LL lsid = (L - b1) % a1 != 0 ? (L - b1) / a1 + (L - b1 > 0 ? 1 : 0) : (L - b1) / a1,
rsid = (R - b1) % a1 != 0 ? (R - b1) / a1 + (R - b1 > 0 ? 0 : -1) : (R - b1) / a1,
x = mid * A2 + mod;
LL l2 = (L - b2) % a2 != 0 ? (L - b2) / a2 + (L - b2 > 0 ? 1 : 0) : (L - b2) / a2,
r2 = (R - b2) % a2 != 0 ? (R - b2) / a2 + (R - b2 > 0 ? 0 : -1) : (R - b2) / a2,
y = ((LD)a1 * x - b2 + b1) / a2;
// printf("%lld %lld %lld %lld %lld [%lld, %lld]\n", lsid, l2, mid, y, x, l, r);
if(lsid <= x && l2 <= y && x >= 0 && y >= 0) r = mid;
else l = mid + 1;
}
al = l;
l = -oo - 1; r = oo + 1;
// printf("%lld %lld\n", l, r);1 -2000000000 2 2000000000 -2000000000 2000000000
while(l < r - 1) {
LL mid = l + (r - l) / 2;
LL lsid = (L - b1) % a1 != 0 ? (L - b1) / a1 + (L - b1 > 0 ? 1 : 0) : (L - b1) / a1,
rsid = (R - b1) % a1 != 0 ? (R - b1) / a1 + (R - b1 > 0 ? 0 : -1) : (R - b1) / a1,
x = mid * A2 + mod;
LL l2 = (L - b2) % a2 != 0 ? (L - b2) / a2 + (L - b2 > 0 ? 1 : 0) : (L - b2) / a2,
r2 = (R - b2) % a2 != 0 ? (R - b2) / a2 + (R - b2 > 0 ? 0 : -1) : (R - b2) / a2,
y = ((LD)a1 * x - b2 + b1) / a2;
// printf("%lld %lld %lld %lld %lld [%lld, %lld]\n", mid, x, y, rsid, r2, l, r);
if(x <= rsid && y <= r2) l = mid;
else r = mid;
}
ar = l;
// printf("%lld %lld\n", al, ar); LL mid = l + (r - l) / 2;
LL lsid = (L - b1) % a1 != 0 ? (L - b1) / a1 + (L - b1 > 0 ? 1 : 0) : (L - b1) / a1,
rsid = (R - b1) % a1 != 0 ? (R - b1) / a1 + (R - b1 > 0 ? 0 : -1) : (R - b1) / a1,
x = mid * A2 + mod;
LL l2 = (L - b2) % a2 != 0 ? (L - b2) / a2 + (L - b2 > 0 ? 1 : 0) : (L - b2) / a2,
r2 = (R - b2) % a2 != 0 ? (R - b2) / a2 + (R - b2 > 0 ? 0 : -1) : (R - b2) / a2,
y = ((LD)a1 * x - b2 + b1) / a2;
if(lsid <= x && x <= rsid && l2 <= y && y <= r2 && x >= 0 && y >= 0 && al <= ar)
cout << ar - al + 1 << endl;
else puts("0"); return 0;
}

[Educational Codeforces Round 16]D. Two Arithmetic Progressions的更多相关文章

  1. Educational Codeforces Round 16 D. Two Arithmetic Progressions (不互质中国剩余定理)

    Two Arithmetic Progressions 题目链接: http://codeforces.com/contest/710/problem/D Description You are gi ...

  2. [Educational Codeforces Round 16]E. Generate a String

    [Educational Codeforces Round 16]E. Generate a String 试题描述 zscoder wants to generate an input file f ...

  3. [Educational Codeforces Round 16]C. Magic Odd Square

    [Educational Codeforces Round 16]C. Magic Odd Square 试题描述 Find an n × n matrix with different number ...

  4. [Educational Codeforces Round 16]B. Optimal Point on a Line

    [Educational Codeforces Round 16]B. Optimal Point on a Line 试题描述 You are given n points on a line wi ...

  5. [Educational Codeforces Round 16]A. King Moves

    [Educational Codeforces Round 16]A. King Moves 试题描述 The only king stands on the standard chess board ...

  6. Educational Codeforces Round 16 E. Generate a String dp

    题目链接: http://codeforces.com/problemset/problem/710/E E. Generate a String time limit per test 2 seco ...

  7. Educational Codeforces Round 16 E. Generate a String (DP)

    Generate a String 题目链接: http://codeforces.com/contest/710/problem/E Description zscoder wants to gen ...

  8. Educational Codeforces Round 16

    A. King Moves water.= =. #include <cstdio> ,,,,,-,-,-}; ,-,,,-,,,-,}; #define judge(x,y) x > ...

  9. Educational Codeforces Round 16 A B C E

    做题太久也有点累了..难题不愿做 水题不愿敲..床上一躺一下午..离下一场div2还有点时间 正好有edu的不计分场 就做了一下玩玩了 D是个数学题 F是个AC自动机 都没看明白 留待以后补 A 给出 ...

随机推荐

  1. [bzoj 1503][NOI 2004]郁闷的出纳员(平衡树)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1503 分析: 经典的平衡树题,我用Treap做的 下面有几点注意的: 1.可能出现新加入的人的 ...

  2. 8、面向对象以及winform的简单运用(事件与winform入门)

    事件 Visual studio中对可视化窗体控件的事件处理机理: 所有的.NET Framework可视化窗体控件的预定义事件,都会某一对应的“事件名+Handler”委托类型的变量.与此事件相关的 ...

  3. Bootstrap3.0学习第八轮(工具Class)

    详情请查看http://aehyok.com/Blog/Detail/14.html 个人网站地址:aehyok.com QQ 技术群号:206058845,验证码为:aehyok 本文文章链接:ht ...

  4. 微信内置浏览器的JsAPI(WeixinJSBridge续)[转载]

    原文地址:  http://www.baidufe.com/item/f07a3be0b23b4c9606bb.html 之前有写过几篇关于微信内置浏览器(WebView)中特有的Javascript ...

  5. ajax中的application/x-www-form-urlencoded中的使用

    ajax中的application/x-www-form-urlencoded中的使用一,HTTP上传的基本知识 在Form元素的语法中,EncType表明提交数据的格式 用 Enctype 属性指定 ...

  6. [转]DBA,SYSDBA,SYSOPER三者的区别

    原文地址:http://www.oracleonlinux.cn/2010/02/dba_sysdba_sysoper/ 什么是DBA?什么是SYSDBA,什么又是SYSOPER?三者究竟有何联系呢? ...

  7. FastDFS在centos上的安装配置与使用

    FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括:文件存储.文件同步.文件访问(文件上传.文件下载)等,解决了大容量存储和负载均衡的问题.特别适合以文件为载体的在线服务.(百 ...

  8. 12.Android之Tabhost组件学习

    TabHost是整个Tab的容器,TabHost的实现有两种方式: 第一种继承TabActivity,从TabActivity中用getTabHost()方法获取TabHost.各个Tab中的内容在布 ...

  9. 【poj1088】 滑雪

    http://poj.org/problem?id=1088 (题目链接) 题意 给出一个矩阵,任意选择一个起点,每次只能向周围4个格子中的值比当前格子小的格子移动,求最多能移动多少步. Soluti ...

  10. 【bzoj3150】 cqoi2013—新Nim游戏

    www.lydsy.com/JudgeOnline/problem.php?id=3105 (题目链接) 题意 在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴.可以一堆都不拿,但不可以全部拿 ...