Linux进程通信 之 信号灯(semphore)(System V && POSIX)
一. 信号灯简介
信号灯与其他进程间通信方式不大相同,它主要提供对进程间共享资源访问控制机制。
相当于内存中的标志,进程可以根据它判定是否能够访问某些共享资源,同时,进程
也可以修改该标志。除了用于访问控制外,还可用于进程同步。
信号灯有以下两种类型:
二值信号灯:最简单的信号灯形式,信号灯的值只能取0或1,类似于互斥锁。
注:二值信号灯能够实现互斥锁的功能,但两者的关注内容不同。信号灯强调共享资源,
只要共享资源可用,其他进程同样可以修改信号灯的值;互斥锁更强调进程,占用资源
的进程使用完资源后,必须由进程本身来解锁。
计算信号灯:信号灯的值可以取任意非负值(当然受内核本身的约束)。
系统V信号灯是随内核持续的,只有在内核重起或者显示删除一个信号灯集时,该信号
灯集才会真正被删除。
二. 信号灯的基本操作
对信号灯的操作无非有下面三种类型:
1、打开或创建信号灯
2、信号灯值操作
linux可以增加或减小信号灯的值,相应于对共享资源的释放和占有。具体参见后面的
semop系统调用。
3、获得或设置信号灯属性:
系统中的每一个信号灯集都对应一个struct sem_array结构,该结构记录了信号灯集
的各种信息,存在于系统空间。为了设置、获得该信号灯集的各种信息及属性,在用户
空间有一个重要的联合结构与之对应,即union semun。
三、系统V信号灯API
系统V消息队列API只有三个,使用时需要包括几个头文件:
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
1)int semget(key_t key, int nsems, int semflg)
参数key是一个键值,由ftok获得,唯一标识一个信号灯集.
参数nsems指定信号灯集包含信号灯的数目;
semflg参数是一些标志位。
该调用返回与健值key相对应的信号灯集id
调用返回:成功返回信号灯集描述字,否则返回-1。
2)int semop(int semid, struct sembuf *sops, unsigned nsops);
semid是信号灯集ID,sops数组的每一个sembuf结构都刻画一个在特定信号灯上的操作。
nsops为sops数组的大小。 sembuf结构如下:
struct sembuf {
unsigned short sem_num;/* semaphore index in array */
shortsem_op;/* semaphore operation */
shortsem_flg;/* operation flags */
};
sem_num对应集合中的信号灯,0对应第一个信号灯, 以此类推...
sem_flg可取IPC_NOWAIT以及SEM_UNDO两个标志。如果设置了SEM_UNDO标志,
那么在进程结束时,相应的操作将被取消,这是比较重要的一个标志位。如果设置了该标
志位,那么在进程没有释放共享资源就退出时,内核将代为释放。如果为一个信号灯设置
了该标志,内核都要分配一个sem_undo结构来记录它,为的是确保以后资源能够安全释
放。事实上,如果进程退出了,那么它所占用就释放了,但信号灯值却没有改变,此时,
信号灯值反映的已经不是资源占有的实际情况,在这种情况下,问题的解决就靠内核来完
成。这有点像僵尸进程,进程虽然退出了,资源也都释放了,但内核进程表中仍然有它的
记录,此时就需要父进程调用waitpid来解决问题了。
sem_op的值大于0,等于0以及小于0确定了对sem_num指定的信号灯进行的三种操作。
这里需要强调的是semop可以同时操作多个信号灯,在实际应用中,对应多种资源的申请
或释放。semop保证操作的原子性,这一点尤为重要。尤其对于多种资源的申请来说,要
么一次性获得所有资源,要么放弃申请,要么在不占有任何资源情况下继续等待,这样,
一方面避免了资源的浪费;另一方面,避免了进程之间由于申请共享资源造成死锁。
也许从实际含义上更好理解这些操作:信号灯的当前值记录相应资源目前可用数目;sem_op>0对应相应进程要释放sem_op数目的共享资源;sem_op=0可以用于对共享资
源是否已用完的测试;sem_op<0相当于进程要申请-sem_op个共享资源。再联想操作的
原子性,更不难理解该系统调用何时正常返回,何时睡眠等待。
调用返回:成功返回0,否则返回-1。
3) int semctl(int semid,int semnum,int cmd,union semun arg)
该系统调用实现对信号灯的各种控制操作,参数semid指定信号灯集,参数cmd指定具体的
操作类型;参数semnum指定对哪个信号灯操作,只对几个特殊的cmd操作有意义;arg用
于设置或返回信号灯信息。
该系统调用详细信息请参见其手册页,这里只给出参数cmd所能指定的操作。
IPC_STAT获取信号灯信息,信息由arg.buf返回;
IPC_SET设置信号灯信息,待设置信息保存在arg.buf中.
GETALL返回所有信号灯的值,结果保存在arg.array中,参数sennum被忽略;
GETNCNT返回等待semnum所代表信号灯的值增加的进程数,相当于目前有多少
进程在等待semnum代表的信号灯所代表的共享资源;
GETPID返回最后一个对semnum所代表信号灯执行semop操作的进程ID;
GETVAL返回semnum所代表信号灯的值;
GETZCNT返回等待semnum所代表信号灯的值变成0的进程数;
SETALL通过arg.array更新所有信号灯的值;同时,更新与本信号集相关的
semid_ds结构的sem_ctime成员;
SETVAL设置semnum所代表信号灯的值为arg.val;
调用返回:调用失败返回-1,成功返回与cmd相关:
Cmdreturn value
GETNCNTSemncnt
GETPIDSempid
GETVALSemval
GETZCNTSemzcnt
semctl函数使用到的结构体:
union semun {
int val;/* value for SETVAL */
struct semid_ds *buf;/* buffer for IPC_STAT & IPC_SET */
unsigned short *array;/* array for GETALL & SETALL */
struct seminfo *__buf;/* buffer for IPC_INFO */ //test!!
void *__pad;
};
struct seminfo {
int semmap;
int semmni;
int semmns;
int semmnu;
int semmsl;
int semopm;
int semume;
int semusz;
int semvmx;
int semaem;
};
四、范例
这个范例使用信号灯来同步共享内存的操作, 程序创建一块共享内存, 然后父子进程共同
修改共享内存. 父子进程采用信号灯来同步操作.
- #include <stdio.h>
- #include <sys/types.h>
- #include <sys/ipc.h>
- #include <sys/sem.h>
- #define SHM_KEY 0x33
- #define SEM_KEY 0x44
- union semun {
- int val;
- struct semid_ds *buf;
- unsigned short *array;
- };
- int P(int semid)
- {
- struct sembuf sb;
- sb.sem_num = 0;
- sb.sem_op = -1;
- sb.sem_flg = SEM_UNDO;
- if(semop(semid, &sb, 1) == -1) {
- perror("semop");
- return -1;
- }
- return 0;
- }
- int V(int semid)
- {
- struct sembuf sb;
- sb.sem_num = 0;
- sb.sem_op = 1;
- sb.sem_flg = SEM_UNDO;
- if(semop(semid, &sb, 1) == -1) {
- perror("semop");
- return -1;
- }
- return 0;
- }
- int main(int argc, char **argv)
- {
- pid_t pid;
- int i, shmid, semid;
- int *ptr;
- union semun semopts;
- /* 创建一块共享内存, 存一个int变量 */
- if ((shmid = shmget(SHM_KEY, sizeof(int), IPC_CREAT | 0600)) == -1) {
- perror("msgget");
- }
- /* 将共享内存映射到进程, fork后子进程可以继承映射 */
- if ((ptr = (int *)shmat(shmid, NULL, 0)) == (void *)-1) {
- perror("shmat");
- }
- *ptr = 0;
- /* 创建一个信号量用来同步共享内存的操作 */
- if ((semid = semget(SEM_KEY, 1, IPC_CREAT | 0600)) == -1) {
- perror("semget");
- }
- /* 初始化信号量 */
- semopts.val = 1;
- if (semctl(semid, 0, SETVAL, semopts) < 0) {
- perror("semctl");
- }
- if ((pid = fork()) < 0) {
- perror("fork");
- } else if (pid == 0) { /* Child */
- /* 子进程对共享内存加1 */
- for (i = 0; i < 100000; i++) {
- P(semid);
- (*ptr)++;
- V(semid);
- printf("child: %d\n", *ptr);
- }
- } else { /* Parent */
- /* 父进程对共享内存减1 */
- for (i = 0; i < 100000; i++) {
- P(semid);
- (*ptr)--;
- V(semid);
- printf("parent: %d\n", *ptr);
- }
- waitpid(pid);
- /* 如果同步成功, 共享内存的值为0 */
- printf("finally: %d\n", *ptr);
- }
- return 0;
- }
Systm V | POSIX |
semctl() | sem_getvalue() |
semget() | sem_post() |
semop() | sem_timedwait() |
sem_trywait() | |
sem_wait() | |
sem_destroy() | |
sem_init() | |
sem_close() | |
sem_open() | |
sem_unlink() |
另外一个区别是,对于POSIX信号量,你可以有命名的信号量,例如,信号量有一个文件
Posix的无名信号量一般用于线程同步, 无名信号量是进程持续的, 无名信号量的api为
sem_init
sem_destroy
下面一个范例使用Posix的有名信号量来同步父子进程的共享内存操作:
- #include <stdio.h>
- #include <sys/types.h>
- #include <sys/ipc.h>
- #include <semaphore.h>
- #include <fcntl.h> /* For O_* constants */
- #include <sys/stat.h> /* For mode constants */
- #include <stdlib.h>
- #define SHM_KEY 0x33
- int main(int argc, char **argv)
- {
- pid_t pid;
- int i, shmid;
- int *ptr;
- sem_t *sem;
- /* 创建一块共享内存, 存一个int变量 */
- if ((shmid = shmget(SHM_KEY, sizeof(int), IPC_CREAT | 0600)) == -1) {
- perror("msgget");
- }
- /* 将共享内存映射到进程, fork后子进程可以继承映射 */
- if ((ptr = (int *)shmat(shmid, NULL, 0)) == (void *)-1) {
- perror("shmat");
- }
- *ptr = 0;
- /* posix的有名信号量是kernel persistent的
- * 调用sem_unlink删除以前的信号量 */
- sem_unlink("/mysem");
- /* 创建新的信号量, 初值为1, sem_open会创建共享内存
- * 所以信号量是内核持续的 */
- if ((sem = sem_open("/mysem", O_CREAT, 0600, 1)) == SEM_FAILED) {
- perror("sem_open");
- }
- if ((pid = fork()) < 0) {
- perror("fork");
- } else if (pid == 0) { /* Child */
- /* 子进程对共享内存加1 */
- for (i = 0; i < 100000; i++) {
- sem_wait(sem);
- (*ptr)++;
- sem_post(sem);
- printf("child: %d\n", *ptr);
- }
- } else { /* Parent */
- /* 父进程对共享内存减1 */
- for (i = 0; i < 100000; i++) {
- sem_wait(sem);
- (*ptr)--;
- sem_post(sem);
- printf("parent: %d\n", *ptr);
- }
- waitpid(pid);
- /* 如果同步成功, 共享内存的值为0 */
- printf("finally: %d\n", *ptr);
- sem_unlink("/mysem");
- }
- return 0;
- }
Linux进程通信 之 信号灯(semphore)(System V && POSIX)的更多相关文章
- Linux进程通信之System V共享内存
前面已经介绍过了POSIX共享内存区,System V共享内存区在概念上类似POSIX共享内存区,POSIX共享内存区的使用是调用shm_open创建共享内存区后调用mmap进行内存区的映射,而Sys ...
- 【转】如何基于linux进程通信设计方案
前言 linux下的进程通信手段基本上是从Unix平台上的进程通信手段继承而来的.而对Unix发展做出重大贡献的两大主力AT&T的贝尔实验室及BSD(加州大学伯克利分校的伯克利软件发布中心)在 ...
- linux进程通信全面解析
进程IPC 的 7种方式 linux下 进程通讯IPC的方式主要有以下7种: 1.文件 2.共享内存 3.信号 4.管道 5.套接字 6.消息列队 7.信号量 以下正文 中 一一 分析下: 1 ...
- Linux进程通信----匿名管道
Linux进程通信中最为简单的方式是匿名管道 匿名管道的创建需要用到pipe函数,pipe函数参数为一个数组表示的文件描述字.这个数组有两个文件描 述字,第一个是用于读数据的文件描述符第二个是用于写数 ...
- linux 进程通信
IPC: 管道,FIFO,信号,消息队列(system v/ posix),共享内存(system v/ posix),socket 同步机制: 互斥锁,条件变量,记录上锁, 信号量(system ...
- Linux进程通信之System V消息队列
System V消息队列是Open Group定义的XSI,不属于POSIX标准.System V IPC的历史相对很早,在上个世70年代后期有贝尔实验室的分支机构开发,80年代加入System V的 ...
- linux进程通信
e14: 进程间通信(进程之间发送/接收字符串/结构体): 传统的通信方式: 管道(有名管道 fifo,无名管道 pipe) 信号 signal System V(基于IPC的对象): ...
- Linux 进程通信之 ——信号和信号量总结
如今最经常使用的进程间通信的方式有:信号,信号量,消息队列,共享内存. 所谓进程通信,就是不同进程之间进行一些"接触",这种接触有简单,也有复杂.机制不同,复杂度也不一 ...
- Linux进程通信的几种方式总结
进程通信的目的 数据传输 一个进程需要将它的数据发送给另一个进程,发送的数据量在一个字节到几M字节之间 共享数据 多个进程想要操作共享数据,一个进程对共享数据 通知事 一个进程需要向另一个或一组进程发 ...
随机推荐
- RSA密钥的跨平台通用
RSA使用public key加密,用private key解密(签名相反,使用private key签名,用public key验证签名).比如我跟合作方D之间的数据传输,我使用D提供给我的publ ...
- 解决IIS Express 80端口被占用的情况
VS2012运行站点的时候提示“无法启动IIS Express Web服务器,端口80正在使用” 于是CMD查看了一下端口使用情况,并且在任务管理器中查看相应的进程,但始终觉得不对,因为显示是Syst ...
- C#——Dictionary<TKey, TValue> 计算向量的余弦值
说明:三角函数的余弦值Cos我想,每个学计算机的理工人都知道,但是真的明白它的用途,我也是刚明白.每个人在初中或者高中的时候,都有这么个疑惑,学三角函数干什么用的?很直白的答案就是考试用的.而且当时的 ...
- Tamper Data
一款可以修改表单的火狐浏览器插件
- javascript设计模式与开发实践阅读笔记(4)——单例模式
定义 单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点. 具体来说,就是保证有些对象有且只有一个,比如线程池.全局缓存.浏览器中的window 对象等.在js中单例模式用途很广,比如登录 ...
- 【锁】Oracle锁系列
[锁]Oracle锁系列 1 BLOG文档结构图 2 前言部分 2.1 导读和注意事项 各位技术爱好者,看完本文后,你可以掌握如下的技能,也可以学到一些其它你所不知道的知识,~O(∩_∩)O~: ...
- android: 后台执行的定时任务
Android 中的定时任务一般有两种实现方式,一种是使用 Java API 里提供的 Timer 类, 一种是使用 Android 的 Alarm 机制.这两种方式在多数情况下都能实现类似的效果,但 ...
- RTL8710 ROM 符号表 函数,常量,变量
函数 Name Address Ordinal ---- ------- ------- __vectors_table Reset_Handler NMI_Handler HardFault_Han ...
- netstat(转载)
简介 Netstat 命令用于显示各种网络相关信息,如网络连接,路由表,接口状态 (Interface Statistics),masquerade 连接,多播成员 (Multicast Member ...
- linux C++ 获取文件绝对路径
提供ftp服务时需要获取文件绝对路径,这里记录一下. #include <stdlib.h> #include <stdio.h> #include <limits.h& ...