题目链接:

D. Directed Roads

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of n towns numbered from1 to n.

There are n directed roads in the Udayland. i-th of them goes from town i to some other town ai (ai ≠ i). ZS the Coder can flip the direction of any road in Udayland, i.e. if it goes from town A to town B before the flip, it will go from town B to town A after.

ZS the Coder considers the roads in the Udayland confusing, if there is a sequence of distinct towns A1, A2, ..., Ak (k > 1) such that for every 1 ≤ i < k there is a road from town Ai to town Ai + 1 and another road from town Ak to town A1. In other words, the roads are confusing if some of them form a directed cycle of some towns.

Now ZS the Coder wonders how many sets of roads (there are 2n variants) in initial configuration can he choose to flip such that after flipping each road in the set exactly once, the resulting network will not be confusing.

Note that it is allowed that after the flipping there are more than one directed road from some town and possibly some towns with no roads leading out of it, or multiple roads between any pair of cities.

Input

The first line of the input contains single integer n (2 ≤ n ≤ 2·105) — the number of towns in Udayland.

The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n, ai ≠ i), ai denotes a road going from town i to town ai.

Output

Print a single integer — the number of ways to flip some set of the roads so that the resulting whole set of all roads is not confusing. Since this number may be too large, print the answer modulo 109 + 7.

Examples
input
3
2 3 1
output
6
input
4
2 1 1 1
output
8
input
5
2 4 2 5 3
output
28

题意:

给出一个n个节点n条边的有向图,可以把一条边反向,现在问有多少种方式可以使这个图没有环;

思路:

可以发现,对于一个环来说,随便反转哪些边就可以,不过有两种不行就是都不反转和都反转,假设这个环有n条边,那么就有2^n-2种方式,其他不在环里的边可以反转可以不反转;

AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack>
#include <map> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=1e9+7;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=2e5+10;
const int maxn=1e3+520;
const double eps=1e-12; int n,a[N],vis[N],dep[N],sum=0;
LL ans=1;
LL pow_mod(int x)
{
LL s=1,base=2;
while(x)
{
if(x&1)s=s*base%mod;
base=base*base%mod;
x>>=1;
}
return s;
}
int dfs(int cur,int deep,int fa)
{
vis[cur]=fa;
dep[cur]=deep;
if(!vis[a[cur]])dfs(a[cur],deep+1,fa);
else if(vis[a[cur]]==fa)
{
ans=ans*(pow_mod(dep[cur]-dep[a[cur]]+1)-2+mod)%mod;
sum+=dep[cur]-dep[a[cur]]+1;
}
}
int main()
{
read(n);
For(i,1,n)read(a[i]);
For(i,1,n)if(!vis[i])dfs(i,0,i);
ans=ans*pow_mod(n-sum)%mod;
cout<<ans<<endl;
return 0;
}

  

codeforces 711D D. Directed Roads(dfs)的更多相关文章

  1. 【34.40%】【codeforces 711D】Directed Roads

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  2. Codeforces 711 D. Directed Roads (DFS判环)

    题目链接:http://codeforces.com/problemset/problem/711/D 给你一个n个节点n条边的有向图,可以把一条边反向,现在问有多少种方式可以使这个图没有环. 每个连 ...

  3. Codeforces Round #369 (Div. 2) D. Directed Roads —— DFS找环 + 快速幂

    题目链接:http://codeforces.com/problemset/problem/711/D D. Directed Roads time limit per test 2 seconds ...

  4. Codeforces Round #369 (Div. 2) D. Directed Roads dfs求某个联通块的在环上的点的数量

    D. Directed Roads   ZS the Coder and Chris the Baboon has explored Udayland for quite some time. The ...

  5. CodeForces #369 div2 D Directed Roads DFS

    题目链接:D Directed Roads 题意:给出n个点和n条边,n条边一定都是从1~n点出发的有向边.这个图被认为是有环的,现在问你有多少个边的set,满足对这个set里的所有边恰好反转一次(方 ...

  6. Codeforces Round #369 (Div. 2) D. Directed Roads (DFS)

    D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  7. CodeForces 711D Directed Roads (DFS判环+计数)

    题意:给定一个有向图,然后你可能改变某一些边的方向,然后就形成一种新图,让你求最多有多少种无环图. 析:假设这个图中没有环,那么有多少种呢?也就是说每一边都有两种放法,一共有2^x种,x是边数,那么如 ...

  8. CodeForces 711D Directed Roads (DFS找环+组合数)

    <题目链接> 题目大意: 给定一个$n$条边,$n$个点的图,每个点只有一条出边(初始状态),现在能够任意对图上的边进行翻转,问你能够使得该有向图不出先环的方案数有多少种. 解题分析: 很 ...

  9. codeforces 711 D.Directed Roads(tarjan 强连通分量 )

    题目链接:http://codeforces.com/contest/711/problem/D 题目大意:Udayland有一些小镇,小镇和小镇之间连接着路,在某些区域内,如果从小镇Ai开始,找到一 ...

随机推荐

  1. ExecutorService常用方法和newFixedThreadPool创建固定大小的线程池

    1.ExecutorService: 是一个接口,继承了Executor: public interface ExecutorService extends Executor { } 2.Execut ...

  2. Represent code in math equations

    Introduce The article shows a way to use math equations to represent code's logical. Key ideas logic ...

  3. PHP获取APK的包信息

    这段时间太忙了,一个月没有写博客了,稍微闲下来就感觉把在开发中遇到的问题记录下来 php上传安卓apk包的时候,需要获取安卓apk包内的信息 <?php /*解析安卓apk包中的压缩XML文件, ...

  4. java中使用 正则 抓取邮箱

    我们来抓取豆瓣网的邮箱吧!把这个页面的所有邮箱都抓取下来 如https://www.douban.com/group/topic/8845032/: 代码如下: package cn.zhangzon ...

  5. 关于SQL2008 “不允许保存更改。您所做的更改要求删除并重新创建以下表。您对无法重新创建的标进行了更改或者启用了‘阻止保存要求重新创建表的更改’” 解决方案

    不允许保存更改.您所做的更改要求删除并重新创建以下表.您对无法重新创建的标进行了更改或者启用了“阻止保存要求重新创建表的更改” 解决方法:  打开SQL SERVER 2008 工具-->选项- ...

  6. spring扫描classpath下特定package,并加载具有特定注解的接口

    spring扫描classpath下特定package,并加载具有特定注解的接口. 在框架平台的开发中,通常有很多的情况通过spring配置方式来实现某些功能会使得框架平台难以使用和扩展,我们通常的做 ...

  7. android Adapter剖析理解

    UI控件都是跟Adapter(适配器)打交道的 Adapter: 是用来帮助控件填充数据的中间桥梁 (在开发中大多数Textview控件的内容是依靠数据库传递并显示的如:新闻类) Adapter: 将 ...

  8. SQLSERVER数据库表各种同步技术

    1 --SQLSERVER数据库表各种同步技术 减少SQLServer中每次的同步数据量 2 3 --说到数据库,我就不由地想到同步数据,如何尽可能地减少每次的同步数据量,以此来提高同步效率,降低对网 ...

  9. MUI - 图片预览(perviewimage)的优化

    主要对mui图片全屏预览插件做了以下三点补充 1.添加了预览图片文字说明,使用的时候需要添加以下css及DOM属性 .mui-slider-img-content { position: absolu ...

  10. org.apache.http.conn.HttpHostConnectException: Connection to http://localhost refused in android

    给Manifest加网络权限<uses-permission android:name="android.permission.INTERNET"/>