[ICPC 北京 2017 J题]HihoCoder 1636 Pangu and Stones
#1636 : Pangu and Stones
描述
In Chinese mythology, Pangu is the first living being and the creator of the sky and the earth. He woke up from an egg and split the egg into two parts: the sky and the earth.
At the beginning, there was no mountain on the earth, only stones all over the land.
There were N piles of stones, numbered from 1 to N. Pangu wanted to merge all of them into one pile to build a great mountain. If the sum of stones of some piles was S, Pangu would need S seconds to pile them into one pile, and there would be S stones in the new pile.
Unfortunately, every time Pangu could only merge successive piles into one pile. And the number of piles he merged shouldn't be less than L or greater than R.
Pangu wanted to finish this as soon as possible.
Can you help him? If there was no solution, you should answer '0'.
输入
There are multiple test cases.
The first line of each case contains three integers N,L,R as above mentioned (2<=N<=100,2<=L<=R<=N).
The second line of each case contains N integers a1,a2 …aN (1<= ai <=1000,i= 1…N ), indicating the number of stones of pile 1, pile 2 …pile N.
The number of test cases is less than 110 and there are at most 5 test cases in which N >= 50.
输出
For each test case, you should output the minimum time(in seconds) Pangu had to take . If it was impossible for Pangu to do his job, you should output 0.
- 样例输入
-
3 2 2
1 2 3
3 2 3
1 2 3
4 3 3
1 2 3 4 - 样例输出
-
9
6
0
【题意】
n个石子堆排成一排,每次可以将连续的最少L堆,最多R堆石子合并在一起,消耗的代价为要合并的石子总数。
求合并成1堆的最小代价,如果无法做到输出0
【分析】
石子归并系列题目,一般都是区间DP,于是——
dp[i][j][k] i到j 分为k堆的最小代价。显然 dp[i][j][ j-i+1]代价为0
然后[i,j] 可以划分
dp[i][j][k] = min { dp[i][d][k-1] + dp[d+1][j][1] } (k > 1&&d-i+1 >= k-1,这个条件意思就是 区间i,d之间最少要有k-1个石子)
最后合并的时候
dp[i][j][1] = min{ dp[i][d][k-1] + dp[d+1][j][1] + sum[j] - sum[i-1] } (l<=k<=r)
【代码】
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=105;
int n,L,R,s[N],f[N][N][N];
inline void Init(){
for(int i=1;i<=n;i++) scanf("%d",s+i),s[i]+=s[i-1];
}
inline void Solve(){
memset(f,0x3f,sizeof f);
for(int i=1;i<=n;i++){
for(int j=i;j<=n;j++){
f[i][j][j-i+1]=0;
}
}
for(int i=n-1;i;i--){
for(int j=i+1;j<=n;j++){
for(int k=i;k<j;k++){
for(int t=L;t<=R;t++){
f[i][j][1]=min(f[i][j][1],f[i][k][t-1]+f[k+1][j][1]+s[j]-s[i-1]);
}
for(int t=2;t<j-i+1;t++){
f[i][j][t]=min(f[i][j][t],f[i][k][t-1]+f[k+1][j][1]);
}
}
}
}
ll ans=f[1][n][1];
printf("%d\n",ans<0x3f3f3f3f?ans:0);
}
int main(){
while(scanf("%d%d%d",&n,&L,&R)==3){
Init();
Solve();
}
return 0;
}
[ICPC 北京 2017 J题]HihoCoder 1636 Pangu and Stones的更多相关文章
- hihoCoder 1636 Pangu and Stones
hihoCoder 1636 Pangu and Stones 思路:区间dp. 状态:dp[i][j][k]表示i到j区间合并成k堆石子所需的最小花费. 初始状态:dp[i][j][j-i+1]=0 ...
- hihocoder 1636 : Pangu and Stones(区间dp)
Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the first livi ...
- HihoCoder 1636 Pangu and Stones(区间DP)题解
题意:合并石子,每次只能合并l~r堆成1堆,代价是新石堆石子个数,问最后能不能合成1堆,不能输出0,能输出最小代价 思路:dp[l][r][t]表示把l到r的石堆合并成t需要的最小代价. 当t == ...
- HihoCoder - 1636 Pangu and Stones(区间DP)
有n堆石子,每次你可以把相邻的最少L堆,最多R堆合并成一堆. 问把所有石子合并成一堆石子的最少花费是多少. 如果不能合并,输出0. 石子合并的变种问题. 用dp[l][r][k]表示将 l 到 r 之 ...
- 2017北京赛区J题
类型:三维动态规划 题目链接 题意: 合并连续石头块,最终要合并成一块,求时间最短,每次只能连续合并L~R块石头,不能合并成一块时输出-1 题解: 利用动态规划解决两种分问题 dp[l][r][k]: ...
- hdu 4462 第37届ACM/ICPC 杭州赛区 J题
题意:有一块n*n的田,田上有一些点可以放置稻草人,再给出一些稻草人,每个稻草人有其覆盖的距离ri,距离为曼哈顿距离,求要覆盖到所有的格子最少需要放置几个稻草人 由于稻草人数量很少,所以状态压缩枚举, ...
- icpc 2017北京 J题 Pangu and Stones 区间DP
#1636 : Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the fi ...
- 2017北京网络赛 J Pangu and Stones 区间DP(石子归并)
#1636 : Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the fi ...
- 2017ICPC北京 J:Pangu and Stones
#1636 : Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the fi ...
随机推荐
- web 和 java 资源
1.自己按照上面的网址和密码自己去下载都那些视频都是vip的视频现在下载免费 7-17JAVA开发搜索引擎自动提示[优效学院向天] 链接:http://pan.baidu.com/s/1bpEkfR ...
- matplotlib、PIL、cv2图像操作 && caffe / tensorflow 通道顺序
用python进行图像处理中分别用到过matplotlib.pyplot.PIL.cv2三种库,这三种库图像读取和保存方法各异,并且图像读取时顺序也有差异,如plt.imread和PIL.Image. ...
- RabbitMQ 可靠投递
RabbitMQ 可靠投递 标签: RabbitMQ shovel-plugin ConfirmCallback RabbitMQ消息投递 背景 confirmCallback 确认模式 return ...
- SpringDataJpa学习
# SpringBoot Jdbc JPA JPA是`Java Persistence API`的简称,中文名Java持久层API,是JDK 5.0注解或XML描述对象-关系表的映射关系,并将运行期的 ...
- 使用python实现深度神经网络 3(转)
使用python实现深度神经网络 3 快速计算梯度的魔法--反向传播算法 快速计算梯度的魔法--反向传播算法 一.实验介绍 1.1 实验内容 第一次实验最后我们说了,我们已经学习了深度学习中的模型mo ...
- WPF双向数据绑定总结
参考官方:https://docs.microsoft.com/zh-cn/dotnet/framework/wpf/data/data-binding-wpf 实例程序:https://files. ...
- 在三台Centos或Windows中部署三台Zookeeper集群配置
一.安装包 1.下载最新版(3.4.13):https://archive.apache.org/dist/zookeeper/ 下载https://archive.apache.org/dist/ ...
- phpBB3导入帖子的Python脚本
关联的数据表 在phpBB3中导入用户时, 需要处理的有两张表, 一个是 topics, 一个是 posts.为了方便与原数据关联, 需要在这两个表上新增一个字段并建立唯一索引 ALTER TABLE ...
- 关于dede后台登陆后一片空白以及去除版权
今天家里的电脑上新装DEDE5.7后台登陆后竟然一片空白,装PHPCMS却没有问题.百度了好久,也没找到一个像样的答案,晕死! 看了源码后发现在源码里的类库中很多都是PHP4的语法,var这个函数在P ...
- Effective Java 第三版——79. 避免过度同步
Tips 书中的源代码地址:https://github.com/jbloch/effective-java-3e-source-code 注意,书中的有些代码里方法是基于Java 9 API中的,所 ...