Min_25 筛

yyb好神仙啊

干什么用的

可以在\(O(\frac{n^{\frac 34}}{\log n})\)的时间内求积性函数\(f(x)\)的前缀和。

别问我为什么是这个复杂度

要求\(f(p)\)是一个关于\(p\)的简单多项式,\(f(p^c)\)可以快速计算。

怎么做啊

首先我们需要对每个\(x=\lfloor\frac ni\rfloor\)求出\(\sum_{i=1}^x[i是质数]f(i)\)。

怎么求呢?

先线性筛出\(\sqrt n\)范围内的质数,设\(P_j\)表示从小到大第\(j\)个质数。

设\(g(n,j)=\sum_{i=1}^{n}[i \in P \ or\ \min(p)>P_j]f(i)\)

说人话就是:\(i\)是质数,或者\(i\)的最小质因子大于\(P_j\),把\(1-n\)内满足条件的\(f(i)\)加起来就是\(g(n,j)\)。

这个东西的实际含义是什么呢?可以参考一下埃氏筛法的运行过程。

假设现在有\(n\)个数依次排开,第\(i\)个数是\(f(i)\),根据埃氏筛法的那套理论,每次选出一个质数,然后筛掉它的所有倍数。

会发现\(g(n,j)\)就是运行\(j\)次埃氏筛法后,没被筛掉的所有数之和加上所有的\(f(p)\)。

我们要求的\(\sum_{i=1}^x[i是质数]f(i)\)其实就是\(g(x,|P|)\),其中\(|P|\)是质数集合的大小。

考虑\(g(n,j)\)的转移,分两种情况:

1、\(P_j^2>n\)。此时运行的第\(j\)次已经不会再筛掉任何数了(因为第\(j\)次运行中筛掉的最小的数是\(P_j^2\)),所以此时\(g(n,j)=g(n,j-1)\)。

2、\(P_j^2\le n\)。这时候我们就要考虑哪些数被筛掉了。被筛掉的数一定含有质因子\(P_j\),且除掉\(P_j\)后最小的质因子会大于等于\(P_j\)。考虑减去\(f(P_j)\times g(\frac{n}{P_j},j-1)\),但在\(g(\frac{n}{P_j},j-1)\)中多减去了\(\sum_{i=1}^{j-1}f(P_i)\)这些最小质因子小于\(P_j\)的函数值,所以再把它们加上就好了。

所以总结起来就是:

\[g(n,j)=\begin{cases} g(n,j-1)&P_j^2\gt n\\ g(n,j-1)-f(P_j)[g(\frac{n}{P_j},j-1)-\sum_{i=1}^{j-1}f(P_i)]&P_j^2\le n\end{cases}
\]

关于\(g(n,j)\)的初值问题:\(g(n,0)\)表示所有数的和,也就是把所有数都当作是质数带入\(f(p)\)的那个多项式中算出的结果。

因为最后只要求所有的\(g(x,|P|)\),所以在求的时候数组只开了一维。这样做的复杂度被证明是\(O(\frac{n^{\frac 34}}{\log n})\)的。

以\(f(x)=1\)即求\(n\)以内的质数个数为例:

for (int i=1,j;i<=n;i=j+1){
j=n/(n/i);w[++m]=n/i;
if (w[m]<=Sqr) id1[w[m]]=m;
else id2[n/w[m]]=m;
g[m]=(w[m]-1)%mod;
}
for (int j=1;j<=tot;++j)
for (int i=1;i<=m&&pri[j]*pri[j]<=w[i];++i){
int k=(w[i]/pri[j]<=Sqr)?id1[w[i]/pri[j]]:id2[n/(w[i]/pri[j])];
g[i]=(g[i]-g[k]+j-1)%mod;g[i]=(g[i]+mod)%mod;
}

说了那么多你求出了啥?

现在我们已经对于\(x=\lfloor\frac ni\rfloor\)求出了\(\sum_{i=1}^x[i是质数]f(i)\)。

我们设\(S(n,j)=\sum_{i=1}^n[\min(p)\ge P_j]f(i)\),也就是所有满足最小质因子大于等于\(P_j\)的\(f\)值之和。

那么最终的答案就是\(S(n,1)+f(1)\)。

鉴于质数的答案我们已经算出来了,是\(g(n,j)-\sum_{i=1}^{j-1}f(P_i)\)。(因为要保证最小质因子大于等于\(P_j\)所以要把小于它的质数减掉)

考虑合数。我们枚举这个合数的最小质因子及其出现次数,然后直接乘即可。

\[S(n,j)=g(n,|P|)-\sum_{i=1}^{j-1}f(P_i)+\sum_{k=j}^{P_k^2\le n}\sum_{e=1}^{P_k^{e+1}\le n}S(\frac{n}{P_k^e},k+1)\times f(P_k^e)+f(P_k^{e+1})
\]

然后这个的复杂度也被证明是\(O(\frac{n^{\frac 34}}{\log n})\)的。

举个栗子

loj6053简单的函数

定义积性函数\(f(p^c)=p\oplus c\),求其前\(n\)项和。

会发现除了\(2\)以外的质数都满足\(f(p)=p\oplus 1=p-1\),所以可以分别计算出\(g(x,|P|)=\sum_{i=1}^x[i是质数]i\)以及\(h(x,|P|)=\sum_{i=1}^x[i是质数]1\)。

在处理\(S\)的时候,如果\(j=1\),就说明其中包含\(2\)这个因数,因此把答案\(+2\)即可。

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
#define ll long long
const int N = 1e6+5;
const int mod = 1e9+7;
int Sqr,zhi[N],pri[N],sp[N],tot,m,id1[N],id2[N],g[N],h[N];
ll n,w[N];
void Sieve(int n){
zhi[1]=1;
for (int i=2;i<=n;++i){
if (!zhi[i]) pri[++tot]=i,sp[tot]=(sp[tot-1]+i)%mod;
for (int j=1;i*pri[j]<=n;++j){
zhi[i*pri[j]]=1;
if (i%pri[j]==0) break;
}
}
}
int S(ll x,int y){
if (x<=1||pri[y]>x) return 0;
int k=(x<=Sqr)?id1[x]:id2[n/x];
int res=(1ll*g[k]-h[k]-sp[y-1]+y-1)%mod;res=(res+mod)%mod;
if (y==1) res+=2;
for (int i=y;i<=tot&&1ll*pri[i]*pri[i]<=x;++i){
ll p1=pri[i],p2=1ll*pri[i]*pri[i];
for (int e=1;p2<=x;++e,p1=p2,p2*=pri[i])
(res+=(1ll*S(x/p1,i+1)*(pri[i]^e)%mod+(pri[i]^(e+1)))%mod)%=mod;
}
return res;
}
int main(){
scanf("%lld",&n);
Sqr=sqrt(n);Sieve(Sqr);
for (ll i=1,j;i<=n;i=j+1){
j=n/(n/i);w[++m]=n/i;
if (w[m]<=Sqr) id1[w[m]]=m;
else id2[n/w[m]]=m;
h[m]=(w[m]-1)%mod;
g[m]=((w[m]+2)%mod)*((w[m]-1)%mod)%mod;
if (g[m]&1) g[m]+=mod;g[m]/=2;
}
for (int j=1;j<=tot;++j)
for (int i=1;i<=m&&1ll*pri[j]*pri[j]<=w[i];++i){
int k=(w[i]/pri[j]<=Sqr)?id1[w[i]/pri[j]]:id2[n/(w[i]/pri[j])];
g[i]=(g[i]-1ll*pri[j]*(g[k]-sp[j-1])%mod)%mod;g[i]=(g[i]+mod)%mod;
h[i]=(h[i]-h[k]+j-1)%mod;h[i]=(h[i]+mod)%mod;
}
printf("%d\n",S(n,1)+1);
return 0;
}

Min_25 筛的更多相关文章

  1. 【UOJ448】【集训队作业2018】人类的本质 min_25筛

    题目大意 给你 \(n,m\),求 \[ \sum_{i=1}^n\sum_{x_1,x_2,\ldots,x_m=1}^i\operatorname{lcm}(\gcd(i,x_1),\gcd(i, ...

  2. Min_25 筛 学习笔记

    原文链接https://www.cnblogs.com/zhouzhendong/p/Min-25.html 前置技能 埃氏筛法 整除分块(这里有提到) 本文概要 1. 问题模型 2. Min_25 ...

  3. UOJ188 Sanrd Min_25筛

    传送门 省选之前做数论题会不会有Debuff啊 这道题显然是要求\(1\)到\(x\)中所有数第二大质因子的大小之和,如果不存在第二大质因子就是\(0\) 线性筛似乎可以做,但是\(10^{11}\) ...

  4. 【SPOJ】DIVCNTK min_25筛

    题目大意 给你 \(n,k\),求 \[ S_k(n)=\sum_{i=1}^n\sigma_0(i^k) \] 对 \(2^{64}\) 取模. 题解 一个min_25筛模板题. 令 \(f(n)= ...

  5. 【51NOD1847】奇怪的数学题 min_25筛

    题目描述 记\(sgcd(i,j)\)为\(i,j\)的次大公约数. 给你\(n\),求 \[ \sum_{i=1}^n\sum_{j=1}^n{sgcd(i,j)}^k \] 对\(2^{32}\) ...

  6. 【51NOD1965】奇怪的式子 min_25筛

    题目描述 给你\(n\),求 \[ \prod_{i=1}^n{\sigma_0(i)}^{i+\mu(i)} \] 对\({10}^{12}+39\)取模. \(\sigma_0(i)\)表示约数个 ...

  7. min_25筛

    min_25筛 用来干啥? 考虑一个积性函数\(F(x)\),用来快速计算前缀和\[\sum_{i=1}^nF(i)\] 当然,这个积性函数要满足\(F(x),x\in Prime\)可以用多项式表示 ...

  8. 关于 min_25 筛的入门以及复杂度证明

    min_25 筛是由 min_25 大佬使用后普遍推广的一种新型算法,这个算法能在 \(O({n^{3\over 4}\over log~ n})\) 的复杂度内解决所有的积性函数前缀和求解问题(个人 ...

  9. 51Nod1222 最小公倍数计数 数论 Min_25 筛

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1222.html 题意 给定 $a,b$, 求 $$\sum_{n=a}^b \sum_{i=1}^n ...

  10. LOJ6053 简单的函数 【Min_25筛】【埃拉托斯特尼筛】

    先定义几个符号: []:若方括号内为一个值,则向下取整,否则为布尔判断 集合P:素数集合. 题目分析: 题目是一个积性函数.做法之一是洲阁筛,也可以采用Min_25筛. 对于一个可以进行Min_25筛 ...

随机推荐

  1. UWP简单示例(二):快速开始你的3D编程

    准备 IDE:Visual Studio 开源库:GitHub.SharpDx 入门示例:SharpDX_D3D12HelloWorld 为什么选择 SharpDx? SharpDx 库与 UWP 兼 ...

  2. Notepad++列编辑

    NotePad++列编辑 工具:Notepad++使用说明:在我们的日常工作中,经常会碰到要修改多行记录,一行行去处理会非常浪费人力,这时候列编辑就是一个很好的解决方法,列编辑在进行数据批量操作时是一 ...

  3. PHP从入门到精通(四)

    PHP数组中的常用函数汇总 为了更直观的讲解各函数的作用和用法,方便大家的理解,首先,我们来定义一个数组.下面各函数的操作将以本数组为例: $arr = array(1,2,3,4,5,6," ...

  4. qa_model

    [code=python] import os import sys import time import numpy import shelve import theano import thean ...

  5. 《Linux内核设计与分析》第四章读书笔记

    <内核设计与实现>第四章读书笔记 第四章:进程调度 进程(操作系统)程序的运行态表现形式. 进程调度程序,它是确保进程能有效工作的一个内核子系统. 调度程序负责决定将哪个进程投入运行,何时 ...

  6. 读书笔记(chapter17)

    设备类型:在所有Unix系统中为了统一普通设备的操作所采用的分类 模块:Linux内核中用于按需加载和卸载目标码的机制 内核对象:内核数据结构中支持面对对象的简单操作,还支持维护对象之间的父子关系 1 ...

  7. Jquery画折线图、柱状图、饼图

    1.今天做了一个折线图,首先需要导js文件.这里有一个demo:http://files.cnblogs.com/files/feifeishi/jquery_zhexiantubingtuzhuzh ...

  8. ECSHOP后台登陆后一段时间不操作就超时的解决方法

    ECSHOP后台登陆后一段时间不操作就超时的解决方法 ECSHOP教程/ ecshop教程网(www.ecshop119.com) 2012-05-27   客户生意比较好,因此比较忙,常常不在电脑前 ...

  9. CentOS Mininal 安装VMtools的方法

    1. 下载安装CentOS75 的mininal版本 2. 安装完成之后挂在vmtools. 虚拟机管理,安装vmtools即可 3. ssh登录虚拟机. cd /dev 进入到设备系统 mount ...

  10. const修饰符与函数

    一.用const修饰函数的参数 函数参数类型前加const指明该参数为常量,在函数内部不可改变. void func(const int x) { //x不可以在内部进行赋值等操作. } 注:当参数为 ...