【UOJ#275】组合数问题(卢卡斯定理,动态规划)
【UOJ#275】组合数问题(卢卡斯定理,动态规划)
题面
题解
数据范围很大,并且涉及的是求值,没法用矩阵乘法考虑。
发现\(k\)的限制是,\(k\)是一个质数,那么在大组合数模小质数的情况下可以考虑使用卢卡斯定理。
卢卡斯定理写出来是\(Lucas(n,m)=Lucas(n/K,m/K)*Lucas(n\%K,m\%K)\)
显然只要有任何一个\(Lucas(n\%K,m\%K)=C_{n\%K}^{m\%K}\)是\(K\)的倍数那么当前数就会是\(K\)的倍数。因为\(K\)是质数,并且组合数的上下都小于\(K\),因此这个值是\(K\)的倍数的时候,当且仅当\(m\%K>n\%K\)。那么整个式子我们理解为,把\(n,m\)按照\(K\)进制分解,当且仅当存在至少一位上有\(m\)的这一位大于\(n\)的这一位成立。分解为\(K\)进制之后最多\(logn\)大概是\(60\)位,可以大力考虑\(dp\)。
设\(f[i][0/1][0/1][0/1][0/1]\)表示当且考虑到了第\(i\)位,第一个数是否卡在上界\(n\),第二个数是否卡在上界\(m\),第二个数是否卡在上界第一个数,前面是否至少已经存在一位满足第二个数大于第一个数了。这样子\(dp\)好复杂,我们用总方案减去不合法的,设\(f[i][0/1][0/1]\)表示当且是否卡在边界上,强制没有任何一位满足第二个数大于第一个数。总数很好算,减一下就好了。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MOD 1000000007
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
long long n,m;int T,K,f[65][2][2],sn[65],tn,sm[65],tm,ans;
int main()
{
cin>>T>>K;
while(T--)
{
cin>>n>>m;m=min(n,m);tn=tm=0;
ans=(((1+m)%MOD)*(m%MOD)%MOD*500000004%MOD+((n-m+1)%MOD)*((m+1)%MOD)%MOD)%MOD;
for(;n;n/=K,m/=K)sn[++tn]=n%K,sm[++tm]=m%K;
memset(f,0,sizeof(f));f[tn+1][1][1]=1;
for(int i=tn;i;--i)
for(int j=0;j<2;++j)
for(int k=0;k<2;++k)
if(f[i+1][j][k])
for(int x=0;x<=(j?sn[i]:K-1);++x)
for(int y=0;y<=(k?sm[i]:K-1)&&y<=x;++y)
add(f[i][j&(x==sn[i])][k&(y==sm[i])],f[i+1][j][k]);
for(int i=0;i<2;++i)
for(int j=0;j<2;++j)
add(ans,MOD-f[1][i][j]);
printf("%d\n",ans);
}
return 0;
}
【UOJ#275】组合数问题(卢卡斯定理,动态规划)的更多相关文章
- 【BZOJ4903】【UOJ#300】吉夫特(卢卡斯定理,动态规划)
[BZOJ4903][UOJ#300]吉夫特(卢卡斯定理,动态规划) 题面 UOJ BZOJ:给的UOJ的链接...... 题解 首先模的质数更小了,直接给定了\(2\).当然是卢卡斯定理了啊. 考虑 ...
- UOJ 275. 【清华集训2016】组合数问题
UOJ 275. [清华集训2016]组合数问题 组合数 $C_n^m $表示的是从 \(n\) 个物品中选出 \(m\) 个物品的方案数.举个例子,从$ (1,2,3)(1,2,3)$ 三个物品中选 ...
- 51nod 1120 机器人走方格 V3 【卡特兰数+卢卡斯定理+组合数】
-我并不知道为什么事卡特兰数,反正用dp打的表就是卡特兰数,因为是两个三角所以再乘个2 卡特兰数使用\( h(n)=\frac{C_{2n}^{n}}{n+1} \)因为范围比较大所以组合数部分用卢卡 ...
- 【2019.8.15 慈溪模拟赛 T2】组合数(binom)(卢卡斯定理+高维前缀和)
卢卡斯定理 题目中说到\(p\)是质数. 而此时要求组合数向质数取模的结果,就可以用卢卡斯定理: \[C_x^y=C_{x\ div\ p}^{y\ div\ p}\cdot C_{x\ mod\ p ...
- 数论篇7——组合数 & 卢卡斯定理(Lucas)
组合数 组合数就是高中排列组合的知识,求解组合数C(n,m),即从n个相同物品中取出m个的方案数. 求解方式 求解通式:$C^{m}_{n}=\dfrac {n!}{m!\left( n-m\righ ...
- UOJ#275. 【清华集训2016】组合数问题 数位dp
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ275.html 题解 用卢卡斯定理转化成一个 k 进制意义下的数位 dp 即可. 算答案的时候补集转化一下 ...
- BZOJ4737 组合数问题(卢卡斯定理+数位dp)
不妨不管j<=i的限制.由卢卡斯定理,C(i,j) mod k=0相当于k进制下存在某位上j大于i.容易想到数位dp,即设f[x][0/1][0/1][0/1]为到第x位时是否有某位上j> ...
- 【Luogu3807】【模板】卢卡斯定理(数论)
题目描述 给定\(n,m,p(1≤n,m,p≤10^5)\) 求 \(C_{n+m}^m mod p\) 保证\(P\)为\(prime\) \(C\)表示组合数. 一个测试点内包含多组数据. 输入输 ...
- 【数论】卢卡斯定理模板 洛谷P3807
[数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...
随机推荐
- Spring Boot Admin 日志查看功能
按照官方配置POM和配置文件后,能够结合Eureka查看各微服务状态,但是日志始终查看不了,出现406等错误. 最后偶然发现,是在在从官方网站拷贝配置的时候,出现的问题. logging.file=* ...
- 大话设计模式(C#)
还是那几句话: 学无止境,精益求精 十年河东,十年河西,莫欺少年穷 学历代表你的过去,能力代表你的现在,学习代表你的将来 问个问题: 如何写出高质量的代码?灵活,可扩展,易读,易维护,可重构,可复用. ...
- EZ 2018 06 17 NOIP2018 模拟赛(十九)
这次的题目难得的水,但是由于许多哲学的原因,第二题题意表述很迷. 然后是真的猜题意了搞了. 不过这样都可以涨Rating我也是服了. Upt:链接莫名又消失了 A. 「NOIP2017模拟赛11.03 ...
- JS回调函数--简单易懂有实例
版权声明:本文为博主原创文章,转载请注明出处 初学js的时候,被回调函数搞得很晕,现在回过头来总结一下什么是回调函数. 我们先来看看回调的英文定义:A callback is a function t ...
- Intel x86_64 Architecture Background 2
这里是在学习Intel x86_64体系架构时学习到的一些概念,记录下来以供日后参考.如果有错的地方,欢迎指正! CPU上下文切换(context switch): 这个概念第一次听到对我来说是完全陌 ...
- 懒人小工具1:winform自动生成Model,Insert,Select,Delete以及导出Excel的方法
懒人小工具2:T4自动生成Model,Insert,Select,Delete以及导出Excel的方法 github地址:https://github.com/Jimmey-Jiang/J ...
- Matlab入门笔记(1)
1.简单练习题: cos(((1+2+3+4+5)^3/5)^0.5) sin(pi^0.5)+log(tan(1)) 2^(3.5*1.7) exp(sin(10)) 2.实数,复数,行向量,列向量 ...
- ACM-ICPC 2018 徐州赛区网络预赛 G. Trace-树状数组-区间修改,单点查询
赛后和队友讨论了一波,感谢无敌的队友给我细心的讲题 先埋坑 #include<iostream> #include<string.h> #include<algorith ...
- Week 3 有求必应
[引] 必应词典已经伴我很久了,但那并不意味着我天天都用它查来查去,它总是静静地蹲在我E盘的一角. 从前的它特别任性,总喜欢开机自己冒出头来看我.后来我嫌它每天都播报新闻,于是就把它关进了冷宫.直到不 ...
- PolarCode
什么是polar code极化码 为了实现可靠的信号传输,编码学家在过去的半个多世纪提出多种纠错码技术如里所码(RS码).卷积码,Turbo码等,并在各种通信系统中取得了广泛的应用.但是以往所有实用的 ...