【UOJ#275】组合数问题(卢卡斯定理,动态规划)
【UOJ#275】组合数问题(卢卡斯定理,动态规划)
题面
题解
数据范围很大,并且涉及的是求值,没法用矩阵乘法考虑。
发现\(k\)的限制是,\(k\)是一个质数,那么在大组合数模小质数的情况下可以考虑使用卢卡斯定理。
卢卡斯定理写出来是\(Lucas(n,m)=Lucas(n/K,m/K)*Lucas(n\%K,m\%K)\)
显然只要有任何一个\(Lucas(n\%K,m\%K)=C_{n\%K}^{m\%K}\)是\(K\)的倍数那么当前数就会是\(K\)的倍数。因为\(K\)是质数,并且组合数的上下都小于\(K\),因此这个值是\(K\)的倍数的时候,当且仅当\(m\%K>n\%K\)。那么整个式子我们理解为,把\(n,m\)按照\(K\)进制分解,当且仅当存在至少一位上有\(m\)的这一位大于\(n\)的这一位成立。分解为\(K\)进制之后最多\(logn\)大概是\(60\)位,可以大力考虑\(dp\)。
设\(f[i][0/1][0/1][0/1][0/1]\)表示当且考虑到了第\(i\)位,第一个数是否卡在上界\(n\),第二个数是否卡在上界\(m\),第二个数是否卡在上界第一个数,前面是否至少已经存在一位满足第二个数大于第一个数了。这样子\(dp\)好复杂,我们用总方案减去不合法的,设\(f[i][0/1][0/1]\)表示当且是否卡在边界上,强制没有任何一位满足第二个数大于第一个数。总数很好算,减一下就好了。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MOD 1000000007
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
long long n,m;int T,K,f[65][2][2],sn[65],tn,sm[65],tm,ans;
int main()
{
cin>>T>>K;
while(T--)
{
cin>>n>>m;m=min(n,m);tn=tm=0;
ans=(((1+m)%MOD)*(m%MOD)%MOD*500000004%MOD+((n-m+1)%MOD)*((m+1)%MOD)%MOD)%MOD;
for(;n;n/=K,m/=K)sn[++tn]=n%K,sm[++tm]=m%K;
memset(f,0,sizeof(f));f[tn+1][1][1]=1;
for(int i=tn;i;--i)
for(int j=0;j<2;++j)
for(int k=0;k<2;++k)
if(f[i+1][j][k])
for(int x=0;x<=(j?sn[i]:K-1);++x)
for(int y=0;y<=(k?sm[i]:K-1)&&y<=x;++y)
add(f[i][j&(x==sn[i])][k&(y==sm[i])],f[i+1][j][k]);
for(int i=0;i<2;++i)
for(int j=0;j<2;++j)
add(ans,MOD-f[1][i][j]);
printf("%d\n",ans);
}
return 0;
}
【UOJ#275】组合数问题(卢卡斯定理,动态规划)的更多相关文章
- 【BZOJ4903】【UOJ#300】吉夫特(卢卡斯定理,动态规划)
[BZOJ4903][UOJ#300]吉夫特(卢卡斯定理,动态规划) 题面 UOJ BZOJ:给的UOJ的链接...... 题解 首先模的质数更小了,直接给定了\(2\).当然是卢卡斯定理了啊. 考虑 ...
- UOJ 275. 【清华集训2016】组合数问题
UOJ 275. [清华集训2016]组合数问题 组合数 $C_n^m $表示的是从 \(n\) 个物品中选出 \(m\) 个物品的方案数.举个例子,从$ (1,2,3)(1,2,3)$ 三个物品中选 ...
- 51nod 1120 机器人走方格 V3 【卡特兰数+卢卡斯定理+组合数】
-我并不知道为什么事卡特兰数,反正用dp打的表就是卡特兰数,因为是两个三角所以再乘个2 卡特兰数使用\( h(n)=\frac{C_{2n}^{n}}{n+1} \)因为范围比较大所以组合数部分用卢卡 ...
- 【2019.8.15 慈溪模拟赛 T2】组合数(binom)(卢卡斯定理+高维前缀和)
卢卡斯定理 题目中说到\(p\)是质数. 而此时要求组合数向质数取模的结果,就可以用卢卡斯定理: \[C_x^y=C_{x\ div\ p}^{y\ div\ p}\cdot C_{x\ mod\ p ...
- 数论篇7——组合数 & 卢卡斯定理(Lucas)
组合数 组合数就是高中排列组合的知识,求解组合数C(n,m),即从n个相同物品中取出m个的方案数. 求解方式 求解通式:$C^{m}_{n}=\dfrac {n!}{m!\left( n-m\righ ...
- UOJ#275. 【清华集训2016】组合数问题 数位dp
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ275.html 题解 用卢卡斯定理转化成一个 k 进制意义下的数位 dp 即可. 算答案的时候补集转化一下 ...
- BZOJ4737 组合数问题(卢卡斯定理+数位dp)
不妨不管j<=i的限制.由卢卡斯定理,C(i,j) mod k=0相当于k进制下存在某位上j大于i.容易想到数位dp,即设f[x][0/1][0/1][0/1]为到第x位时是否有某位上j> ...
- 【Luogu3807】【模板】卢卡斯定理(数论)
题目描述 给定\(n,m,p(1≤n,m,p≤10^5)\) 求 \(C_{n+m}^m mod p\) 保证\(P\)为\(prime\) \(C\)表示组合数. 一个测试点内包含多组数据. 输入输 ...
- 【数论】卢卡斯定理模板 洛谷P3807
[数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...
随机推荐
- 性能调优之vmstat命令
vmstat是Virtual Meomory Statistics(虚拟内存统计)的缩写,可对操作系统的虚拟内存.进程.IO读写.CPU活动等进行监视.它是对系统的整体情况进行统计,不足之处是无法对某 ...
- item 8: 比起0和NULL更偏爱nullptr
本文翻译自modern effective C++,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 先让我们看一些概念:字面上的0是一个int,不是一个指针.如果C+ ...
- 从0到1上线一个微信小程序
0.0 前期准备 微信小程序的出现极大地降低了个人开发者微创业的门槛,不需要后端技术,不需要服务器和域名这些乱七八糟的前置操作,只需要懂得前端技术,就能发布一款属于自己的轻量级应用,简直是前端开发者的 ...
- spring boot 集成Druid
Druid是阿里巴巴开源平台上一个数据库连接池实现,它结合了C3P0.DBCP.PROXOOL等DB池的优点,同时加入了日志监控,可以很好的监控DB池连接和SQL的执行情况,可以说是针对监控而生的DB ...
- C#抽象类跟接口
抽象类描述的是一个什么东西,属性. 抽象类是对类的抽象,描述是什么 抽象类,继承后重写接口描述的是他做什么,行为.接口是对行为的抽象,描述做什么 ,进行继承后实行接口
- Python下操作Memcache/Redis/RabbitMQ说明
一.MemcacheMemcache是一套分布式的高速缓存系统,由LiveJournal的Brad Fitzpatrick开发,但目前被许多网站使用以提升网站的访问速度,尤其对于一些大型的.需要频繁访 ...
- Spring Cloud :断路器集群监控(Turbine)
一. 简介 上一篇文章我们已经实现了对单个服务实例的监控,当然在实际应用中,单个实例的监控数据没有多大的价值,我们更需要的是一个集群系统的监控信息,这时我们就需要引入Turbine.Turb ...
- 网易2018.03.27算法岗,三道编程题100%样例AC题解
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/8660814.html特别不喜欢那些随便转载别人的原创文章又不给 ...
- 如何在css中设置按钮button中包含图片文字对齐方式
<el-button class="class-management style="line-heught">班级管理
- PHP 闭包获取外部变量和global关键字声明变量的区别
最近在学习workerman的时候比较频繁的接触到回调函数,使用中经常会因为worker的使用方式不同,会用这两种不同的方式去调用外部的worker变量,这里就整理一下PHP闭包获取外部变量和glob ...