Codeforce Div-3 E.Cyclic Components
You are given an undirected graph consisting of nn vertices and mm edges. Your task is to find the number of connected components which are cycles.
Here are some definitions of graph theory.
An undirected graph consists of two sets: set of nodes (called vertices) and set of edges. Each edge connects a pair of vertices. All edges are bidirectional (i.e. if a vertex aa is connected with a vertex bb, a vertex bb is also connected with a vertex aa). An edge can't connect vertex with itself, there is at most one edge between a pair of vertices.
Two vertices uu and vv belong to the same connected component if and only if there is at least one path along edges connecting uu and vv.
A connected component is a cycle if and only if its vertices can be reordered in such a way that:
- the first vertex is connected with the second vertex by an edge,
- the second vertex is connected with the third vertex by an edge,
- ...
- the last vertex is connected with the first vertex by an edge,
- all the described edges of a cycle are distinct.
A cycle doesn't contain any other edges except described above. By definition any cycle contains three or more vertices.
There are 66 connected components, 22 of them are cycles: [7,10,16][7,10,16] and [5,11,9,15][5,11,9,15].
The first line contains two integer numbers nn and mm (1≤n≤2⋅1051≤n≤2⋅105, 0≤m≤2⋅1050≤m≤2⋅105) — number of vertices and edges.
The following mm lines contains edges: edge ii is given as a pair of vertices vivi, uiui (1≤vi,ui≤n1≤vi,ui≤n, ui≠viui≠vi). There is no multiple edges in the given graph, i.e. for each pair (vi,uivi,ui) there no other pairs (vi,uivi,ui) and (ui,viui,vi) in the list of edges.
Print one integer — the number of connected components which are also cycles.
5 4
1 2
3 4
5 4
3 5
1
17 15
1 8
1 12
5 11
11 9
9 15
15 5
4 13
3 13
4 3
10 16
7 10
16 7
14 3
14 4
17 6
2
In the first example only component [3,4,5][3,4,5] is also a cycle.
The illustration above corresponds to the second example.
题意:
让你求回路的个数,而且这个回路是没有杂边的单环。
思路
如果有这样的回路,那么每一个节点的度数一定为2。用dfs跑一遍,如果在跑的过程中,所有的点度数均为2,那么它一定就是我们要找的环。
这里我使用了一种新的邻接表,使用vector,这种方式没有办法存储边的长度,但是可以很直接的看出点的度数。如果要用vector来储存权值的话,那么再开一个vector,依次记录就行了
#include<iostream>
#include<vector>
using namespace std;
int book[];
int g;
vector<int>a[]; void dfs(int x)
{
book[x]=;
if(a[x].size()!=){g=;} for(int i:a[x]){
if(!book[i]){dfs(i);}
}
} int main()
{
int n,m;
cin>>n>>m;
int x,y;
for(int i=;i<=m;i++){
cin>>x>>y;
a[x].push_back(y);
a[y].push_back(x);
}
int ans=;
for(int i=;i<=n;i++){
g=;
if(!book[i]){
dfs(i);
if(!g){ans++;}
}
}
cout<<ans<<endl;
}
以上思路来自于大神代码:

Codeforce Div-3 E.Cyclic Components的更多相关文章
- Codeforces Round #479 (Div. 3) E. Cyclic Components (思维,DFS)
题意:给你\(n\)个顶点和\(m\)条边,问它们有多少个单环(无杂环),例如图中第二个就是一个杂环. 题解:不难发现,如果某几个点能够构成单环,那么每个点一定只能连两条边.所以我们先构建邻接表,然后 ...
- CF 977E Cyclic Components
E. Cyclic Components time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- Cyclic Components CodeForces - 977E(DFS)
Cyclic Components CodeForces - 977E You are given an undirected graph consisting of nn vertices and ...
- 【codeforces div3】【E. Cyclic Components】
E. Cyclic Components time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- E. Cyclic Components (DFS)(Codeforces Round #479 (Div. 3))
#include <bits/stdc++.h> using namespace std; *1e5+; vector<int>p[maxn]; vector<int&g ...
- Codeforce 977E Cyclic Components
dfs判断图的连通块数量~ #include<cstdio> #include<algorithm> #include<vector> #include<cs ...
- S - Cyclic Components (并查集的理解)
Description You are given an undirected graph consisting of nn vertices and mm edges. Your task is t ...
- Educational Codeforces Round 37 (Rated for Div. 2) E. Connected Components? 图论
E. Connected Components? You are given an undirected graph consisting of n vertices and edges. Inste ...
- codeforce div 377
#include <bits/stdc++.h> using namespace std; #define pb push_back #define lb lower_bound #def ...
随机推荐
- Codeforces Round #503 (by SIS, Div. 2)-C. Elections
枚举每个获胜的可能的票数+按照花费排序 #include<iostream> #include<stdio.h> #include<string.h> #inclu ...
- Uniform Generator HDU1014
题意 给你公式seed(x+1) = [seed(x) + STEP] % MOD ,输入step和mod, 问你是否可以从第一项0,算到mod,它们是否都不同 是 good choice 否则 ba ...
- 美食应用 吃了么 beta 测试报告
为了更好的测试我们应用的兼容性和性能,我们借助了网上的平台Testin云测和百度MTC平台来测试我们的应用,一下是我们的测试结果. 一.兼容性测试 我们对119台终端机器进行了测试,通过测试的有99台 ...
- Python学习笔记(一)——初学Python
1.Python环境配置 本人配置Python2.7及Python3.6版本 将Python3.6环境配置在线,因此默认为Python3.6版本 Python2.7及Python3.6共存 2.简单操 ...
- 实战框架ABP
abp及实战框架概述 接触abp也快一年了,有过大半年的abp项目开发经验,目前项目中所用的abp框架版本为0.10.3,最新的abp框架已经到了1.4,并且支持了asp.net core.关于abp ...
- CAS的应用场景
国外应用(需FQ尝试): 来自CAS官网推荐的Demo http://casserver.herokuapp.com/cas/login https://casserver.herokuapp.com ...
- 《Effective C#》快速笔记(一)- C# 语言习惯
目录 一.使用属性而不是可访问的数据成员 二.使用运行时常量(readonly)而不是编译时常量(const) 三.推荐使用 is 或 as 操作符而不是强制类型转换 四.使用 Conditional ...
- git常用命令及用法小计
git init 初始化一个本地git仓库repository git status 查看状态 git add <file> 将工作区修改加到暂存区(stage) git commit - ...
- VS2017+WIN10自动生成类、接口的说明(修改类模板的方法)
微软发布VS2017的时候,我第一时间离线一份专业版,安装到了自己的电脑上,开始体验,但是问题来了,在开发中建立类和接口的时候,说 明注释总要自己写一次,烦!~~于是还是像以前一样改IDE默认的类和接 ...
- indicator function指示函数
指示函数 在集合论中,指示函数是定义在某集合X上的函数,表示其中有哪些元素属于某一子集A. 中文名 指示函数 外文名 indicator function 相关学科 数学.组合数学 其他称呼 特征 ...