题意:

给定三个矩形,选定三个点,答案加上第一个点出发经过第二个点在第三个点结束的方案数,只能往右或往下走。

折腾了我半个多下午的题。

设三个矩形为$A,B,C$
一个思路是枚举$B$的那个点$s(x,y)$,求出$s$到$A$中所有点的方案数的和乘上$x$到$B$中所有点的方案数的和,复杂度爆炸。

$s$到$A$中所有点的方案数的和等于$$\sum_{i=x1}^{x2}\sum_{j=y1}^{y2} C_{x-i+x-j}^{x-i}$$

用二维前缀和的方法容斥一下,变成了求(顺便化简)$$\sum_{i=0}^{a}\sum_{j=0}^{b} C_{i+j}^{i}=C_{a+b+1}^{a+1}-1$$
复杂度变成了$O(N^2)$
然后发现那个化简完的组合数其实相当于$s$到一个固定的点(不随$s$改变)的方案数,相当于固定了起点,可以用同样的方法固定终点。
现在每条起点到终点的路径都有一个权值,相当于经过的$B$中的点的个数,答案就是所有路径权值和。
再把$B$容斥一下,让矩形的左上角为起点,这样就可以枚举走出矩形后的第一个点求权值和了。
复杂度$O(N*64)$

#include<cstdio>
#include<iostream>
#define ll long long
#define N 2000010
using namespace std;
const int p = 1000000007;
int jie[N],ni[N];
const int inf = 2000005;
int c(int m,int n)
{
return 1LL*jie[n]*ni[m]%p*ni[n-m]%p;
}
ll ans;
int ss(int x1,int y1,int x2,int y2,int x3,int y3)
{
int as=0;
for(int i=y1;i<=y2;i++)
{
(as+=1LL*c(x3-x2-1,x3-x2-1+y3-i)*c(x2-x1,x2-x1+i-y1)%p*(x2-x1+1+i-y1)%p)%=p;
}
for(int i=x1;i<=x2;i++)
{
(as+=1LL*c(y3-y2-1,y3-y2-1+x3-i)*c(y2-y1,y2-y1+i-x1)%p*(y2-y1+1+i-x1)%p)%=p;
}
return as;
}
int x1,x2,x3,x4,x5,x6;
int y1,y2,y3,y4,y5,y6;
int calc(int a1,int b1,int a2,int b2)
{
int as=0;
as+=ss(a1,b1,x4,y4,a2,b2);
as+=ss(a1,b1,x3-1,y3-1,a2,b2);as%=p;
as-=ss(a1,b1,x3-1,y4,a2,b2);
as-=ss(a1,b1,x4,y3-1,a2,b2);
return (as%p+p)%p;
}
int solve(int x,int y)
{
int as=0;
as+=calc(x,y,x6+1,y6+1);as+=calc(x,y,x5,y5);as%=p;
as-=calc(x,y,x6+1,y5);as-=calc(x,y,x5,y6+1);
return (as%p+p)%p;
}
int main()
{
jie[0]=ni[0]=ni[1]=1;
for(int i=1;i<=inf;i++)jie[i]=1LL*jie[i-1]*i%p;
for(int i=2;i<=inf;i++)ni[i]=1LL*(p-p/i)*ni[p%i]%p;
for(int i=2;i<=inf;i++)ni[i]=1LL*ni[i-1]*ni[i]%p;
scanf("%d%d%d%d%d%d",&x1,&x2,&x3,&x4,&x5,&x6);
scanf("%d%d%d%d%d%d",&y1,&y2,&y3,&y4,&y5,&y6);
ans+=solve(x1-1,y1-1);
ans+=solve(x2,y2);
ans-=solve(x1-1,y2);
ans-=solve(x2,y1-1);
ans=(ans%p+p)%p;
printf("%lld\n",ans);
return 0;
}

  

AtCoder Grand Contest 018 E Sightseeing Plan的更多相关文章

  1. AtCoder Grand Contest 018 D - Tree and Hamilton Path

    题目传送门:https://agc018.contest.atcoder.jp/tasks/agc018_d 题目大意: 给定一棵\(N\)个点的带权树,求最长哈密顿路径(不重不漏经过每个点一次,两点 ...

  2. AtCoder Grand Contest 018 A

    A - Getting Difference Time limit時間制限 : 2sec / Memory limitメモリ制限 : 256MB 配点 : 300 点 問題文 箱に N 個のボールが入 ...

  3. 【贪心】【堆】AtCoder Grand Contest 018 C - Coins

    只有两维的时候,我们显然要按照Ai-Bi排序,然后贪心选取. 现在,也将人按照Ai-Bi从小到大排序,一定存在一个整数K,左侧的K个人中,一定有Y个人取银币,K-Y个人取铜币: 右侧的X+Y+Z-K个 ...

  4. 【贪心】AtCoder Grand Contest 018 B - Sports Festival

    假设我们一开始选取所有的运动项目,然后每一轮将当前选择人数最多的运动项目从我们当前的项目集合中删除,尝试更新答案.容易发现只有这样答案才可能变优,如果不动当前选取人数最多的项目,答案就不可能变优. 我 ...

  5. 【GCD】AtCoder Grand Contest 018 A - Getting Difference

    从大到小排序,相邻两项作差,求gcd,如果K是gcd的倍数并且K<=max{a(i)},必然有解,否则无解. 可以自己手画画证明. #include<cstdio> #include ...

  6. AtCoder Grand Contest 018 A - Getting Difference

    A - Getting Difference Time limit : 2sec / Memory limit : 256MB Score : 300 points Problem Statement ...

  7. AtCoder Grand Contest 018题解

    传送门 \(A\) 根据裴蜀定理显然要\(k|\gcd(a_1,...,a_n)\),顺便注意不能造出大于\(\max(a_1,...,a_n)\)的数 int n,g,k,x,mx; int mai ...

  8. AtCoder Grand Contest 012

    AtCoder Grand Contest 012 A - AtCoder Group Contest 翻译 有\(3n\)个人,每一个人有一个强大值(看我的假翻译),每三个人可以分成一组,一组的强大 ...

  9. AtCoder Grand Contest 011

    AtCoder Grand Contest 011 upd:这篇咕了好久,前面几题是三周以前写的... AtCoder Grand Contest 011 A - Airport Bus 翻译 有\( ...

随机推荐

  1. CentOS 7 安装Redis

    Linux安装Redis 一.下载并安装 $ wget http://download.redis.io/releases/redis-2.8.17.tar.gz $ tar xzf redis-2. ...

  2. 【JVM.8】类加载及执行子系统的案例与实战

    一. 案例分析 1. Tomcat:正统的类加载器架构 主流的Java Web服务器,如Tomcat.Jetty.WebLogic.WebSphere或其他服务器,都实现了自己定义的类加载器(一般都不 ...

  3. (理论篇)从基础文件IO说起虚拟内存,内存文件映射,零拷贝

    为了快速构建项目,使用高性能框架是我的职责,但若不去深究底层的细节会让我失去对技术的热爱. 探究的过程是痛苦并激动的,痛苦在于完全理解甚至要十天半月甚至没有机会去应用,激动在于技术的相同性,新的框架不 ...

  4. Quartz.Net分布式任务管理平台

           无关主题:一段时间没有更新文章了,与自己心里的坚持还是背驰,虽然这期间在公司做了统计分析,由于资源分配问题,自己或多或少的原因,确实拖得有点久了,自己这段时间也有点松懈,借口就不说那么多 ...

  5. 基于Ping和Telnet/NC的监控脚本案例分析

    案例一:单纯地对某些ip进行ping监控 [root@test opt]# cat /opt/hosts_ip_list 192.168.10.10 192.168.10.11 192.168.10. ...

  6. LB层到Real Server之间访问请求的响应时间及HTTP状态码监控及报警设置

    为了监控到各业务的访问质量,基于LB层的Nginx日志,实现LB层到Real Server之间访问请求的响应时间(即upstream_response_time)及HTTP状态码(即upstream_ ...

  7. 个人实验 github地址:https://github.com/quchengyu/cher

    一.实践目的 1.掌握类的定义,对象的创建. 2.掌握实现封装.继承.多态的方法,掌握各种修饰符的使用. 3.掌握将对象数组作为方法的参数和返回值. 4.掌握抽象类与接口的概念及实现,理解动态绑定机制 ...

  8. 纯MarkDown博客阅读体验优化

    今天鼓捣了一天纯MarkDown书写的博客样式的美化,事实证明图表较多的MarkDown撰写的博文一样可以展现出非常漂亮的效果.为了让纯MarkDown书写的博客有一个干净舒服的阅读体验,我主要针对博 ...

  9. ubuntu在windows下的wubi安装

    转自:http://mp.weixin.qq.com/s?__biz=MjM5NjYxNjU0OQ==&mid=200664819&idx=2&sn=25719890570b1 ...

  10. Kitematic - VirtualBox is not installed. Docker for windows 10

    Kitematic - VirtualBox is not installed. Docker for windows 10 https://github.com/docker/kitematic/i ...