tensorFlow(六)应用-基于CNN破解验证码
TensorFlow基础见前博客
简介
步骤简介
generate_captcha.py- 利用 Captcha 库生成验证码;captcha_model.py- CNN 模型;train_captcha.py- 训练 CNN 模型;predict_captcha.py- 识别验证码。
数据学习
安装 captcha 库
pip install captcha
获取训练数据
#-*- coding:utf-8 -*-
from captcha.image import ImageCaptcha
from PIL import Image
import numpy as np
import random
import string class generateCaptcha():
def __init__(self,
width = 160,#验证码图片的宽
height = 60,#验证码图片的高
char_num = 4,#验证码字符个数
characters = string.digits + string.ascii_uppercase + string.ascii_lowercase):#验证码组成,数字+大写字母+小写字母
self.width = width
self.height = height
self.char_num = char_num
self.characters = characters
self.classes = len(characters) def gen_captcha(self,batch_size = 50):
X = np.zeros([batch_size,self.height,self.width,1])
img = np.zeros((self.height,self.width),dtype=np.uint8)
Y = np.zeros([batch_size,self.char_num,self.classes])
image = ImageCaptcha(width = self.width,height = self.height) while True:
for i in range(batch_size):
captcha_str = ''.join(random.sample(self.characters,self.char_num))
img = image.generate_image(captcha_str).convert('L')
img = np.array(img.getdata())
X[i] = np.reshape(img,[self.height,self.width,1])/255.0
for j,ch in enumerate(captcha_str):
Y[i,j,self.characters.find(ch)] = 1
Y = np.reshape(Y,(batch_size,self.char_num*self.classes))
yield X,Y def decode_captcha(self,y):
y = np.reshape(y,(len(y),self.char_num,self.classes))
return ''.join(self.characters[x] for x in np.argmax(y,axis = 2)[0,:]) def get_parameter(self):
return self.width,self.height,self.char_num,self.characters,self.classes def gen_test_captcha(self):
image = ImageCaptcha(width = self.width,height = self.height)
captcha_str = ''.join(random.sample(self.characters,self.char_num))
img = image.generate_image(captcha_str)
img.save(captcha_str + '.jpg') X = np.zeros([1,self.height,self.width,1])
Y = np.zeros([1,self.char_num,self.classes])
img = img.convert('L')
img = np.array(img.getdata())
X[0] = np.reshape(img,[self.height,self.width,1])/255.0
for j,ch in enumerate(captcha_str):
Y[0,j,self.characters.find(ch)] = 1
Y = np.reshape(Y,(1,self.char_num*self.classes))
return X,Y
理解训练数据
- X:一个 mini-batch 的训练数据,其 shape 为 [ batch_size, height, width, 1 ],batch_size 表示每批次多少个训练数据,height 表示验证码图片的高,width 表示验证码图片的宽,1 表示图片的通道。
- Y:X 中每个训练数据属于哪一类验证码,其形状为 [ batch_size, class ] ,对验证码中每个字符进行 One-Hot 编码,所以 class 大小为 4*62。
- 获取验证码和对应的分类
cd /home/ubuntu;
python
from generate_captcha import generateCaptcha
g = generateCaptcha()
X,Y = g.gen_test_captcha()
- 查看训练数据
X.shape
Y.shape
可以在 /home/ubuntu目录下查看生成的验证码,jpg 格式的图片可以点击查看。
模型学习
CNN 模型

# -*- coding: utf-8 -*
import tensorflow as tf
import math class captchaModel():
def __init__(self,
width = 160,
height = 60,
char_num = 4,
classes = 62):
self.width = width
self.height = height
self.char_num = char_num
self.classes = classes def conv2d(self,x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(self,x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME') def weight_variable(self,shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) def bias_variable(self,shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) def create_model(self,x_images,keep_prob):
#first layer
w_conv1 = self.weight_variable([5, 5, 1, 32])
b_conv1 = self.bias_variable([32])
h_conv1 = tf.nn.relu(tf.nn.bias_add(self.conv2d(x_images, w_conv1), b_conv1))
h_pool1 = self.max_pool_2x2(h_conv1)
h_dropout1 = tf.nn.dropout(h_pool1,keep_prob)
conv_width = math.ceil(self.width/2)
conv_height = math.ceil(self.height/2) #second layer
w_conv2 = self.weight_variable([5, 5, 32, 64])
b_conv2 = self.bias_variable([64])
h_conv2 = tf.nn.relu(tf.nn.bias_add(self.conv2d(h_dropout1, w_conv2), b_conv2))
h_pool2 = self.max_pool_2x2(h_conv2)
h_dropout2 = tf.nn.dropout(h_pool2,keep_prob)
conv_width = math.ceil(conv_width/2)
conv_height = math.ceil(conv_height/2) #third layer
w_conv3 = self.weight_variable([5, 5, 64, 64])
b_conv3 = self.bias_variable([64])
h_conv3 = tf.nn.relu(tf.nn.bias_add(self.conv2d(h_dropout2, w_conv3), b_conv3))
h_pool3 = self.max_pool_2x2(h_conv3)
h_dropout3 = tf.nn.dropout(h_pool3,keep_prob)
conv_width = math.ceil(conv_width/2)
conv_height = math.ceil(conv_height/2) #first fully layer
conv_width = int(conv_width)
conv_height = int(conv_height)
w_fc1 = self.weight_variable([64*conv_width*conv_height,1024])
b_fc1 = self.bias_variable([1024])
h_dropout3_flat = tf.reshape(h_dropout3,[-1,64*conv_width*conv_height])
h_fc1 = tf.nn.relu(tf.nn.bias_add(tf.matmul(h_dropout3_flat, w_fc1), b_fc1))
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #second fully layer
w_fc2 = self.weight_variable([1024,self.char_num*self.classes])
b_fc2 = self.bias_variable([self.char_num*self.classes])
y_conv = tf.add(tf.matmul(h_fc1_drop, w_fc2), b_fc2) return y_conv
训练 CNN 模型
示例代码:
#-*- coding:utf-8 -*-
import tensorflow as tf
import numpy as np
import string
import generate_captcha
import captcha_model if __name__ == '__main__':
captcha = generate_captcha.generateCaptcha()
width,height,char_num,characters,classes = captcha.get_parameter() x = tf.placeholder(tf.float32, [None, height,width,1])
y_ = tf.placeholder(tf.float32, [None, char_num*classes])
keep_prob = tf.placeholder(tf.float32) model = captcha_model.captchaModel(width,height,char_num,classes)
y_conv = model.create_model(x,keep_prob)
cross_entropy = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=y_,logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) predict = tf.reshape(y_conv, [-1,char_num, classes])
real = tf.reshape(y_,[-1,char_num, classes])
correct_prediction = tf.equal(tf.argmax(predict,2), tf.argmax(real,2))
correct_prediction = tf.cast(correct_prediction, tf.float32)
accuracy = tf.reduce_mean(correct_prediction) saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
step = 1
while True:
batch_x,batch_y = next(captcha.gen_captcha(64))
_,loss = sess.run([train_step,cross_entropy],feed_dict={x: batch_x, y_: batch_y, keep_prob: 0.75})
print ('step:%d,loss:%f' % (step,loss))
if step % 100 == 0:
batch_x_test,batch_y_test = next(captcha.gen_captcha(100))
acc = sess.run(accuracy, feed_dict={x: batch_x_test, y_: batch_y_test, keep_prob: 1.})
print ('###############################################step:%d,accuracy:%f' % (step,acc))
if acc > 0.99:
saver.save(sess,"./capcha_model.ckpt")
break
step += 1
然后执行:
cd /home/ubuntu;
python train_captcha.py
执行结果:
step:75193,loss:0.010931
step:75194,loss:0.012859
step:75195,loss:0.008747
step:75196,loss:0.009147
step:75197,loss:0.009351
step:75198,loss:0.009746
step:75199,loss:0.010014
step:75200,loss:0.009024
###############################################step:75200,accuracy:0.992500
使用训练好的模型:
train_captcha.py 文件中 if acc > 0.99: 代码行的准确度节省训练时间(比如将 0.99 为 0.01),体验训练过程;我们已经通过长时间的训练得到了一个训练好的模型,可以通过如下命令将训练集下载到本地。wget http://tensorflow-1253902462.cosgz.myqcloud.com/captcha/capcha_model.zip
unzip -o capcha_model.zip
识别验证码
测试数据集:
wget 命令获取:wget http://tensorflow-1253902462.cosgz.myqcloud.com/captcha/captcha.zip
unzip -q captcha.zip
然后执行:
cd /home/ubuntu;
python predict_captcha.py captcha/0hWn.jpg
执行结果:
0hWn
tensorFlow(六)应用-基于CNN破解验证码的更多相关文章
- TensorFlow - 深度学习破解验证码 实验
TensorFlow - 深度学习破解验证码 简介:验证码主要用于防刷,传统的验证码识别算法一般需要把验证码分割为单个字符,然后逐个识别,如果字符之间相互重叠,传统的算法就然并卵了,本文采用cnn对验 ...
- 基于CNN的人群密度图估计方法简述
人群计数的方法分为传统的视频和图像人群计数算法以及基于深度学习的人群计数算法,深度学习方法由于能够方便高效地提取高层特征而获得优越的性能是传统方法无法比拟的.本文简单了秒速了近几年,基于单张图像利用C ...
- CNN大战验证码
介绍 爬虫江湖,风云再起.自从有了爬虫,也就有了反爬虫:自从有了反爬虫,也就有了反反爬虫. 反爬虫界的一大利器,就是验证码(CAPTCHA),各种各样的验证码让人眼花缭乱,也让很多人在爬虫的过 ...
- tensorflow笔记:多层CNN代码分析
tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 ...
- TensorFlow系列专题(十三): CNN最全原理剖析(续)
目录: 前言 卷积层(余下部分) 卷积的基本结构 卷积层 什么是卷积 滑动步长和零填充 池化层 卷积神经网络的基本结构 总结 参考文献 一.前言 上一篇我们一直说到了CNN[1]卷积层的特性,今天 ...
- SQL Server 2008空间数据应用系列六:基于SQLCRL的空间数据可编程性
原文:SQL Server 2008空间数据应用系列六:基于SQLCRL的空间数据可编程性 友情提示,您阅读本篇博文的先决条件如下: 1.本文示例基于Microsoft SQL Server 2008 ...
- cvpr2017:branchout——基于CNN的在线集成跟踪
1.引言 2017年CVPR上有不少关于跟踪的paper.CF方面最引人瞩目的应该是ECO了,CNN方面也有一些新的进展.Branchout是一个基于CNN用bagging集成的在线跟踪方法. con ...
- LSF-SCNN:一种基于 CNN 的短文本表达模型及相似度计算的全新优化模型
欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 本篇文章是我在读期间,对自然语言处理中的文本相似度问题研究取得的一点小成果.如果你对自然语言处理 (natural language proc ...
- 实验楼Python破解验证码
本人大二,因为Python结业考试项目,又想要学习机器学习方向,但是由于接触时间不长,选择了实验楼的Python破解验证码这个项目作为我的项目, 我在原来的基础上加了一些代码用于完善,并且对功能如何实 ...
随机推荐
- JavaScricp(总回顾)
知识点导图 1:基础知识 (1)JavaScript是脚本语言,弱类型,执行非常非常快 (2)它与java有什么关系?没有任何关系 (3)js能做什么事情?1控制浏览器 BOM ,2控制元素 DOM ...
- 1333:【例2-2】Blah数集
1333:[例2-2]Blah数集 注意是数组,答案数组中不能有重复数字 q数组是存储答案的 代码: #include<iostream> #include<cstdio> # ...
- C# 生成 COM控件
C#编写COM组件 软件:Microsoft VisualStudio 2010 1.新建一个类库项目 2.将Class1.cs改为我们想要的名字(例如:MyClass.cs) 问是否同时给类改名,确 ...
- js 简单的进度条
html部分 <div id='div1'> <div id="div2"></div> </div> css部分 div{ hei ...
- ORA-12801/ORA-12853: insufficient memory for PX buffers: current 274880K, max needed 19722240K/ORA-04031解决方法
近日,现场一台服务器在运行时出现下列异常: ORA-12801: error signaled in parallel query server P139 ORA-12853: insufficien ...
- DataFrame数据转为list,再逐行写入Excel
首先使用np.array()函数把DataFrame转化为np.ndarray(), 再利用tolist()函数把np.ndarray()转为list, 示例代码如下: # -*- coding:ut ...
- 【题解】Luogu P4588 [TJOI2018]数学计算
原题传送门 这题是线段树的模板题 显而易见,直接模拟是不好模拟的(取模后就不好再除了) 我们按照时间来建一颗线段树 线段树初始值都为1,用来维护乘积 第一种操作就在当前时间所对应的节点上把乘数改成m ...
- 【mysql】group_concat函数substring_index函数
1.group_concat函数:用于将多个字符串连接成一个字符串 用法规则: SELECT GROUP_CONCAT(拼接的字段) from tableName; 使用:查询basic_projec ...
- 剑指offer(24)二叉树中和为某一值的路径
题目描述 输入一颗二叉树和一个整数,打印出二叉树中结点值的和为输入整数的所有路径.路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路径 题目分析 这题基本上一看就知道应该深度遍历整个树, ...
- 剑指offer(46)孩子们的游戏
题目描述 每年六一儿童节,牛客都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此.HF作为牛客的资深元老,自然也准备了一些小游戏.其中,有个游戏是这样的:首先,让小朋友们围成一个大圈.然后,他随机指 ...