Chinese Postman Problem Aizu - DPL_2_B(无向图中国邮路问题)
题意:
带权无向图上的中国邮路问题:一名邮递员需要经过每条边至少一次,最后回到出发点,一条边多次经过权值要累加,问最小总权值是多少。(2 <= N <= 15, 1 <= M <= 1000)
解析:
每条边都要至少经过一次, 如果每条边只能经过一次,那么是不是就是一个欧拉回路的问题,但无向图的欧拉回路必须保证 每个点的度数为偶数
所以如果有某个点的度数为奇数,那就比较尴尬了。。。
因为一条边有两个端点, 所以如果有奇数点,那么奇数点的个数一定是个偶数
我们先假设在这个无向图中有两个奇点分别为s 和 t,那么根据欧拉路径 s 一定可以经过所有边一次 然后到t , 但我们还要回去,那么是不是走t 到 s 的最短路就好了
那么最短路算法求出这个原图中是t - s的最短路 添加到原图中,是不是就是一个欧拉回路!
同理 如果奇点个数大于2 ,那么我们就建一个二分图,把这些点分别放到左边 和 右边,每两个点的边权为它们之间的最短路,求最小权匹配就好了
然后把求出来的这些匹配 添加到原图中 求欧拉回路
但这题的n比较小 用状压去枚举所有的情况 dp一下就好了
1 如果是连通图,转2,否则返回无解并结束;
2 检查中的奇点,构成图的顶点集;
3 求出中每对奇点之间的最短路径长度,作为图对应顶点间的边权;
4 对进行最小权匹配;
5 把最小权匹配里的每一条匹配边代表的路径,加入到图中得到图;
6 在中求欧拉回路,即所求的最优路线。
#include <bits/stdc++.h>
#define mem(a, b) memset(a, b, sizeof(a))
using namespace std;
const int maxn = , INF = 0x7fffffff;
int head[maxn], d[maxn], vis[maxn], deg[maxn], dp[ << + ];
int n, m, cnt;
vector<int> odd;
int way[][];
struct node
{
int u, v, w, next;
}Node[maxn]; void add_(int u, int v, int w)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt].w = w;
Node[cnt].next = head[u];
head[u] = cnt++;
} void add(int u, int v, int w)
{
add_(u, v, w);
add_(v, u, w);
} int spfa(int s, int t)
{
for(int i = ; i < maxn; i++) d[i] = INF;
queue<int> Q;
mem(vis, );
Q.push(s);
vis[s] = ;
d[s] = ;
while(!Q.empty())
{
int u = Q.front(); Q.pop();
vis[u] = ;
for(int i = head[u]; i != -; i = Node[i].next)
{
node e = Node[i];
if(d[e.v] > d[u] + e.w)
{
d[e.v] = d[u] + e.w;
if(!vis[e.v])
{
Q.push(e.v);
vis[e.v] = ;
}
}
}
}
// cout << s << " " << t << endl;
// cout << d[t] << endl;
return d[t];
} void init()
{
mem(head, -);
mem(way, -);
cnt = ;
} int main()
{
init();
int edge_sum = ;
int u, v, w;
cin >> n >> m;
for(int i = ; i < m; i++)
{
cin >> u >> v >> w;
add(u, v, w);
deg[u]++;
deg[v]++;
// way[u][v] = way[v][u] = w;
edge_sum += w;
}
for(int i = ; i < n; i++) if(deg[i] & ) odd.push_back(i); //n的数比较小 所以用状压dp枚举所有情况 即可
int len = odd.size();
for(int i = ; i < ( << len); i++) dp[i] = INF;
dp[] = ;
for(int mask = ; mask < ( << len); mask++)
{
int ncnt = __builtin_popcount(mask); //统计mask中有多少个1
if(ncnt & ) continue;
vector<int> bits; //bits[i]代表了mask第bits[i]位有1 同时也是odd里的第bits[i]个数的下标
for(int i = ; i < len; i++)
if(mask & ( << i)) bits.push_back(i);
// int blen = bits.size();
for(int i = ; i < ncnt - ; i++)
{
for(int j = i + ; j < ncnt; j++)
{
int sp_mask = mask ^ ( << bits[i]) ^ ( << bits[j]);
int u = odd[bits[i]], v = odd[bits[j]];
int shost_path = way[u][v] == - ? spfa(u, v) : way[u][v];
way[u][v] = way[v][u] = shost_path;
dp[mask] = min(dp[mask], dp[sp_mask] + shost_path);
}
}
} cout << edge_sum + dp[( << len) - ] << endl; return ;
}
Chinese Postman Problem Aizu - DPL_2_B(无向图中国邮路问题)的更多相关文章
- The Chinese Postman Problem HIT - 2739(有向图中国邮路问题)
无向图的问题,如果每个点的度数为偶数,则就是欧拉回路,而对于一个点只有两种情况,奇数和偶数,那么就把都为奇数的一对点 连一条 边权为原图中这两点最短路的值 的边 是不是就好了 无向图中国邮路问 ...
- HITOJ 2739 The Chinese Postman Problem(欧拉回路+最小费用流)
The Chinese Postman Problem My Tags (Edit) Source : bin3 Time limit : 1 sec Memory limit : 6 ...
- HIT 2739 - The Chinese Postman Problem - [带权有向图上的中国邮路问题][最小费用最大流]
题目链接:http://acm.hit.edu.cn/hoj/problem/view?id=2739 Time limit : 1 sec Memory limit : 64 M A Chinese ...
- HIT2739 The Chinese Postman Problem(最小费用最大流)
题目大概说给一张有向图,要从0点出发返回0点且每条边至少都要走过一次,求走的最短路程. 经典的CPP问题,解法就是加边构造出欧拉回路,一个有向图存在欧拉回路的充分必要条件是基图连通且所有点入度等于出度 ...
- FZU - 2038 -E - Another Postman Problem (思维+递归+回溯)
Chinese Postman Problem is a very famous hard problem in graph theory. The problem is to find a shor ...
- Problem E: 穷游中国在统题 优先队列 + 模拟
http://www.gdutcode.sinaapp.com/problem.php?cid=1049&pid=4 Problem E: 穷游中国在统题 Description Travel ...
- LightOJ1086 Jogging Trails(欧拉回路+中国邮递员问题+SPFA)
题目求从某点出发回到该点经过所有边至少一次的最短行程. 这个问题我在<图论算法理论.实现及应用>中看过,是一个经典的问题——中国邮递员问题(CPP, chinese postman pro ...
- Soj题目分类
-----------------------------最优化问题------------------------------------- ----------------------常规动态规划 ...
- 贪心算法:旅行商问题(TSP)
TSP问题(Traveling Salesman Problem,旅行商问题),由威廉哈密顿爵士和英国数学家克克曼T.P.Kirkman于19世纪初提出.问题描述如下: 有若干个城市,任何两个城市之间 ...
随机推荐
- 2-物联网开发标配方案(51单片机程序介绍+WIFI程序介绍)
上一节 https://www.cnblogs.com/yangfengwu/p/9944438.html 购买云服务器安装MQTT就不用说了,以前写过文章介绍 https://www.cnblog ...
- IDEA 创建和使用tomcat
一.创建一个普通web项目,步骤略,如下图. 二.配置项目相关信息. 1.通过如下方式在Artifacts下添加我们的项目. 2.选中我们的项目. 3.修改项目的默认输出位置,可根据需要修改. 4.如 ...
- eclipse 报错Version 1.6.0_45 of the JVM is not suitable for this product. Version:1.7 or greater is required
最近离职来了一家新公司,之前的公司的开发IDE用的是IntelliJIDEA和SpringSourceToolSuit,自己在家里用的也是MyEclipse,所以使用eclipse的经验还是不足.结果 ...
- JS-JS作用域问题
一. js没有块级作用域(可以自己闭包或其他方法实现),只有函数级作用域,函数外面的变量函数里面可以找到,函数里面的变量外面找不到. var a=10; function fn(){ console. ...
- 使用Win PE修改其他硬盘中的系统注册表
使用场景:原来装的机械硬盘系统盘为C盘,后来买了个SSD固态硬盘后,进入WinPE系统后,把原来的C盘整个复制到了固态硬盘,然后用BooticeX64.exe工具在UEFI启动中增加SSD固态硬盘中的 ...
- 51Nod 1299 监狱逃离
这其实是一道树形DP的神仙题. 然后开始推推推,1 hour later样例都过不了 然后仔细一看题目,貌似像一个最小割模型,然后5min想了想建图: 首先拆点,将每个点拆成进和出两个,然后连边,边权 ...
- SKINNY加密算法详解(无代码,仅加密)
原作者论文请参考<The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS> 地址为:https://li ...
- java注解XML
用的是jdk自带的javax.xml.bind.JAXBContext将对象和xml字符串进行相互转换. 比较常用的几个: @XmlRootElement:根节点 @XmlAttribute:该属性作 ...
- main函数是必须的吗
研究实验4 研究过程: 问题引出:C语言编程非得用主函数main吗,不用是否可以? 对此问题进行研究,用tc.exe书写代码如下: 图1 没有main函数的c程序 对其进行编译,链接发现,编译阶段可 ...
- 转发:C#加密方法汇总
转自:C#加密方法汇总 方法一: //须添加对System.Web的引用 using System.Web.Security; ... /// <summary> /// SHA1加密字符 ...