Chinese Postman Problem Aizu - DPL_2_B(无向图中国邮路问题)
题意:
带权无向图上的中国邮路问题:一名邮递员需要经过每条边至少一次,最后回到出发点,一条边多次经过权值要累加,问最小总权值是多少。(2 <= N <= 15, 1 <= M <= 1000)
解析:
每条边都要至少经过一次, 如果每条边只能经过一次,那么是不是就是一个欧拉回路的问题,但无向图的欧拉回路必须保证 每个点的度数为偶数
所以如果有某个点的度数为奇数,那就比较尴尬了。。。
因为一条边有两个端点, 所以如果有奇数点,那么奇数点的个数一定是个偶数
我们先假设在这个无向图中有两个奇点分别为s 和 t,那么根据欧拉路径 s 一定可以经过所有边一次 然后到t , 但我们还要回去,那么是不是走t 到 s 的最短路就好了
那么最短路算法求出这个原图中是t - s的最短路 添加到原图中,是不是就是一个欧拉回路!
同理 如果奇点个数大于2 ,那么我们就建一个二分图,把这些点分别放到左边 和 右边,每两个点的边权为它们之间的最短路,求最小权匹配就好了
然后把求出来的这些匹配 添加到原图中 求欧拉回路
但这题的n比较小 用状压去枚举所有的情况 dp一下就好了
1 如果是连通图,转2,否则返回无解并结束;
2 检查中的奇点,构成图的顶点集;
3 求出中每对奇点之间的最短路径长度,作为图对应顶点间的边权;
4 对进行最小权匹配;
5 把最小权匹配里的每一条匹配边代表的路径,加入到图中得到图;
6 在中求欧拉回路,即所求的最优路线。
#include <bits/stdc++.h>
#define mem(a, b) memset(a, b, sizeof(a))
using namespace std;
const int maxn = , INF = 0x7fffffff;
int head[maxn], d[maxn], vis[maxn], deg[maxn], dp[ << + ];
int n, m, cnt;
vector<int> odd;
int way[][];
struct node
{
int u, v, w, next;
}Node[maxn]; void add_(int u, int v, int w)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt].w = w;
Node[cnt].next = head[u];
head[u] = cnt++;
} void add(int u, int v, int w)
{
add_(u, v, w);
add_(v, u, w);
} int spfa(int s, int t)
{
for(int i = ; i < maxn; i++) d[i] = INF;
queue<int> Q;
mem(vis, );
Q.push(s);
vis[s] = ;
d[s] = ;
while(!Q.empty())
{
int u = Q.front(); Q.pop();
vis[u] = ;
for(int i = head[u]; i != -; i = Node[i].next)
{
node e = Node[i];
if(d[e.v] > d[u] + e.w)
{
d[e.v] = d[u] + e.w;
if(!vis[e.v])
{
Q.push(e.v);
vis[e.v] = ;
}
}
}
}
// cout << s << " " << t << endl;
// cout << d[t] << endl;
return d[t];
} void init()
{
mem(head, -);
mem(way, -);
cnt = ;
} int main()
{
init();
int edge_sum = ;
int u, v, w;
cin >> n >> m;
for(int i = ; i < m; i++)
{
cin >> u >> v >> w;
add(u, v, w);
deg[u]++;
deg[v]++;
// way[u][v] = way[v][u] = w;
edge_sum += w;
}
for(int i = ; i < n; i++) if(deg[i] & ) odd.push_back(i); //n的数比较小 所以用状压dp枚举所有情况 即可
int len = odd.size();
for(int i = ; i < ( << len); i++) dp[i] = INF;
dp[] = ;
for(int mask = ; mask < ( << len); mask++)
{
int ncnt = __builtin_popcount(mask); //统计mask中有多少个1
if(ncnt & ) continue;
vector<int> bits; //bits[i]代表了mask第bits[i]位有1 同时也是odd里的第bits[i]个数的下标
for(int i = ; i < len; i++)
if(mask & ( << i)) bits.push_back(i);
// int blen = bits.size();
for(int i = ; i < ncnt - ; i++)
{
for(int j = i + ; j < ncnt; j++)
{
int sp_mask = mask ^ ( << bits[i]) ^ ( << bits[j]);
int u = odd[bits[i]], v = odd[bits[j]];
int shost_path = way[u][v] == - ? spfa(u, v) : way[u][v];
way[u][v] = way[v][u] = shost_path;
dp[mask] = min(dp[mask], dp[sp_mask] + shost_path);
}
}
} cout << edge_sum + dp[( << len) - ] << endl; return ;
}
Chinese Postman Problem Aizu - DPL_2_B(无向图中国邮路问题)的更多相关文章
- The Chinese Postman Problem HIT - 2739(有向图中国邮路问题)
无向图的问题,如果每个点的度数为偶数,则就是欧拉回路,而对于一个点只有两种情况,奇数和偶数,那么就把都为奇数的一对点 连一条 边权为原图中这两点最短路的值 的边 是不是就好了 无向图中国邮路问 ...
- HITOJ 2739 The Chinese Postman Problem(欧拉回路+最小费用流)
The Chinese Postman Problem My Tags (Edit) Source : bin3 Time limit : 1 sec Memory limit : 6 ...
- HIT 2739 - The Chinese Postman Problem - [带权有向图上的中国邮路问题][最小费用最大流]
题目链接:http://acm.hit.edu.cn/hoj/problem/view?id=2739 Time limit : 1 sec Memory limit : 64 M A Chinese ...
- HIT2739 The Chinese Postman Problem(最小费用最大流)
题目大概说给一张有向图,要从0点出发返回0点且每条边至少都要走过一次,求走的最短路程. 经典的CPP问题,解法就是加边构造出欧拉回路,一个有向图存在欧拉回路的充分必要条件是基图连通且所有点入度等于出度 ...
- FZU - 2038 -E - Another Postman Problem (思维+递归+回溯)
Chinese Postman Problem is a very famous hard problem in graph theory. The problem is to find a shor ...
- Problem E: 穷游中国在统题 优先队列 + 模拟
http://www.gdutcode.sinaapp.com/problem.php?cid=1049&pid=4 Problem E: 穷游中国在统题 Description Travel ...
- LightOJ1086 Jogging Trails(欧拉回路+中国邮递员问题+SPFA)
题目求从某点出发回到该点经过所有边至少一次的最短行程. 这个问题我在<图论算法理论.实现及应用>中看过,是一个经典的问题——中国邮递员问题(CPP, chinese postman pro ...
- Soj题目分类
-----------------------------最优化问题------------------------------------- ----------------------常规动态规划 ...
- 贪心算法:旅行商问题(TSP)
TSP问题(Traveling Salesman Problem,旅行商问题),由威廉哈密顿爵士和英国数学家克克曼T.P.Kirkman于19世纪初提出.问题描述如下: 有若干个城市,任何两个城市之间 ...
随机推荐
- ASP.NET Core中获取完整的URL(转载)
在之前的ASP.NET中,可以通过 Request.Url.AbsoluteUri 获取,但在ASP.NET Core没有这个实现,请问如何获取呢?方法一:先引用“using Microsoft.As ...
- ASP.NET Web API上实现 Web Socket - 转
1. 什么是Web Socket Web Socket是Html5中引入的通信机制,它为浏览器与后台服务器之间提供了基于TCP的全双工的通信通道.用以替代以往的LongPooling等comet st ...
- phpstorm 2018.1.2的安装和破解
1.什么是phpstorm? PhpStorm是一个轻量级且便捷的PHP IDE,其旨在提高用户效率,可深刻理解用户的编码,提供智能代码补全,快速导航以及即时错误检查.但是phpstorm是商业软件, ...
- python中和生成器协程相关yield from之最详最强解释,一看就懂(二)
一. 从列表中yield 语法形式:yield from <可迭代的对象实例> python中的列表是可迭代的, 如果想构造一个生成器逐一产生list中元素,按之前的yield语法,是在 ...
- JQuery如何实现双击事件时不触发单击事件
单击和双击事件的执行顺序: 单击(click):mousedown,mouseout,click: 双击(dblclick):mousedown,mouseout,click , mousedown, ...
- ExtJS初探:在项目中使用ExtJS
注意:本文写作时间是 2013 年,所讲的 ExtJS 如今早已过时,请勿学习! -------------------------------- 今天ExtJS官网发布了ExtJS最新正式版4.2. ...
- Tomcat通过自带的Cluster方式实现Session会话共享环境操作记录
一般来说,在多个tomcat集群业务中,session会话共享是必须的需求,不然前端nginx转发过来的请求不知道之前请求在哪台tomcat节点上,从而就找不到session以至于最终导致请求失败.要 ...
- bootmgr is conmpressed联想Z485
昨天清理磁盘空间的时候,手贱把驱动器给压缩了.再开机的时候就遇到了bootmgr is conmpressed. 我把解决办法发布到百度经验上了 http://jingyan.baidu.com/ar ...
- 变量 var &函数new
声明变量 变量:变量是存储信息的容器,创建变量通常称为"声明"变量 变量必须以字母开头(小驼峰式myName): 变量也能以 $ 和 _ 符号开头(不过我们不推荐这么做): 变量名 ...
- Some questions after Reading 《移山之道》
很少见到用故事的形式来写技术书籍的,这是我看到的第一本,书写得比较有趣,看了之后也是有一定的收获. 作者在此书中旁征博引,引用的东西虽不能一个一个查询是否正确,但是每次读到时候,感觉一种现代的软件工 ...