SQL to Aggregation Mapping Chart

https://docs.mongodb.com/manual/reference/sql-aggregation-comparison/

The aggregation pipeline allows MongoDB to provide native aggregation capabilities that corresponds to many common data aggregation operations in SQL.

The following table provides an overview of common SQL aggregation terms, functions, and concepts and the corresponding MongoDB aggregation operators:

SQL Terms, Functions, and Concepts MongoDB Aggregation Operators
WHERE $match
GROUP BY $group
HAVING $match
SELECT $project
ORDER BY $sort
LIMIT $limit
SUM() $sum
COUNT() $sum
join

$lookup

New in version 3.2.

Examples

The following table presents a quick reference of SQL aggregation statements and the corresponding MongoDB statements. The examples in the table assume the following conditions:

  • The SQL examples assume two tables, orders and order_lineitem that join by theorder_lineitem.order_id and the orders.id columns.

  • The MongoDB examples assume one collection orders that contain documents of the following prototype:

    {
    cust_id: "abc123",
    ord_date: ISODate("2012-11-02T17:04:11.102Z"),
    status: 'A',
    price: 50,
    items: [ { sku: "xxx", qty: 25, price: 1 },
    { sku: "yyy", qty: 25, price: 1 } ]
    }
SQL Example MongoDB Example Description
SELECT COUNT(*) AS count
FROM orders
db.orders.aggregate( [
{
$group: {
_id: null,
count: { $sum: 1 }
}
}
] )
Count all records from orders
SELECT SUM(price) AS total
FROM orders
db.orders.aggregate( [
{
$group: {
_id: null,
total: { $sum: "$price" }
}
}
] )
Sum the price field from orders
SELECT cust_id,
SUM(price) AS total
FROM orders
GROUP BY cust_id
db.orders.aggregate( [
{
$group: {
_id: "$cust_id",
total: { $sum: "$price" }
}
}
] )
For each unique cust_id, sum theprice field.
SELECT cust_id,
SUM(price) AS total
FROM orders
GROUP BY cust_id
ORDER BY total
db.orders.aggregate( [
{
$group: {
_id: "$cust_id",
total: { $sum: "$price" }
}
},
{ $sort: { total: 1 } }
] )
For each unique cust_id, sum theprice field, results sorted by sum.
SELECT cust_id,
ord_date,
SUM(price) AS total
FROM orders
GROUP BY cust_id,
ord_date
db.orders.aggregate( [
{
$group: {
_id: {
cust_id: "$cust_id",
ord_date: {
month: { $month: "$ord_date" },
day: { $dayOfMonth: "$ord_date" },
year: { $year: "$ord_date"}
}
},
total: { $sum: "$price" }
}
}
] )
For each unique cust_idord_dategrouping, sum the price field. Excludes the time portion of the date.
SELECT cust_id,
count(*)
FROM orders
GROUP BY cust_id
HAVING count(*) > 1
db.orders.aggregate( [
{
$group: {
_id: "$cust_id",
count: { $sum: 1 }
}
},
{ $match: { count: { $gt: 1 } } }
] )
For cust_id with multiple records, return the cust_id and the corresponding record count.
SELECT cust_id,
ord_date,
SUM(price) AS total
FROM orders
GROUP BY cust_id,
ord_date
HAVING total > 250
db.orders.aggregate( [
{
$group: {
_id: {
cust_id: "$cust_id",
ord_date: {
month: { $month: "$ord_date" },
day: { $dayOfMonth: "$ord_date" },
year: { $year: "$ord_date"}
}
},
total: { $sum: "$price" }
}
},
{ $match: { total: { $gt: 250 } } }
] )
For each unique cust_idord_dategrouping, sum the price field and return only where the sum is greater than 250. Excludes the time portion of the date.
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
_id: "$cust_id",
total: { $sum: "$price" }
}
}
] )
For each unique cust_id with status A, sum the price field.
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
_id: "$cust_id",
total: { $sum: "$price" }
}
},
{ $match: { total: { $gt: 250 } } }
] )
For each unique cust_id with status A, sum the price field and return only where the sum is greater than 250.
SELECT cust_id,
SUM(li.qty) as qty
FROM orders o,
order_lineitem li
WHERE li.order_id = o.id
GROUP BY cust_id
db.orders.aggregate( [
{ $unwind: "$items" },
{
$group: {
_id: "$cust_id",
qty: { $sum: "$items.qty" }
}
}
] )
For each unique cust_id, sum the corresponding line item qty fields associated with the orders.
SELECT COUNT(*)
FROM (SELECT cust_id,
ord_date
FROM orders
GROUP BY cust_id,
ord_date)
as DerivedTable
db.orders.aggregate( [
{
$group: {
_id: {
cust_id: "$cust_id",
ord_date: {
month: { $month: "$ord_date" },
day: { $dayOfMonth: "$ord_date" },
year: { $year: "$ord_date"}
}
}
}
},
{
$group: {
_id: null,
count: { $sum: 1 }
}
}
] )
Count the number of distinctcust_idord_date groupings. Excludes the time portion of the d

mongodb 语句和SQL语句对应(SQL to Aggregation Mapping Chart)的更多相关文章

  1. SQL to MongoDB Mapping Chart

    http://docs.mongodb.org/manual/reference/sql-comparison/ In addition to the charts that follow, you ...

  2. Mongodb操作之查询(循序渐进对比SQL语句)

    工具推荐:Robomongo,可自行百度寻找下载源,个人比较推荐这个工具,相比较mongoVUE则更加灵活. 集合简单查询方法 mongodb语法:db.collection.find()  //co ...

  3. MongoDB对应SQL语句

    -------------------MongoDB对应SQL语句------------------- 1.Create and Alter     1.     sql:         crea ...

  4. mongodb 跟踪SQL语句及慢查询收集

    有个需求:跟踪mongodb的SQL语句及慢查询收集 第一步:通过mongodb自带函数可以查看在一段时间内DML语句的运行次数. 在bin目录下面运行  ./mongostat -port 端口号  ...

  5. Mongodb 与sql 语句对照

    此处用mysql中的sql语句做例子,C# 驱动用的是samus,也就是上文中介绍的第一种. 引入项目MongoDB.dll //创建Mongo连接 var mongo = new Mongo(&qu ...

  6. Mongodb操作之查询(循序渐进对比SQL语句)(转http://www.tuicool.com/articles/UzQj6rF)

    工具推荐:Robomongo,可自行百度寻找下载源,个人比较推荐这个工具,相比较mongoVUE则更加灵活. 集合简单查询方法 mongodb语法:db.collection.find()  //co ...

  7. mongodb与sql语句对比

    左边是mongodb查询语句,右边是sql语句.对照着用,挺方便. db.users.find() select * from users db.users.find({"age" ...

  8. mongodb查询语句与sql语句对比

    左边是mongodb查询语句,右边是sql语句.对照着用,挺方便. db.users.find() select * from users db.users.find({"age" ...

  9. mongodb与sql语句对照表

    inert into users value(3,5) db.users.insert({a:3,b:5})     select a,b from users db.users.find({}, { ...

随机推荐

  1. Linux下Mysql安装(RPM安装)

    1. 首先检查机器里是否已经存在MySQL $ rpm -qa | grep mysql 2. 去官网下载相应的rpm包:https://dev.mysql.com/downloads/mysql/ ...

  2. java【基础】日期操作

    主要是date类,SimpleDateFormat类以及Calendar类的使用. date表示日期,simpleDateFormat 表示日期格式化,Calendar一般用来做时间的操作,比如加减天 ...

  3. 新版本wireshark tshark使用

    Wireshark-tshark wireshark 指令模式 => tshark Windows 及Linux 可至安裝目錄執行>tshark tshark.exe -i 7(利用-D找 ...

  4. concurrent.futures模块(进程池/线程池)

    需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加 ...

  5. 设计模式学习心得<汇总>

    绝大部分程序员其实用不上设计模式. - 创建 结构 行为 描述 在软件工程中,创建型模式是处理对象创建的设计模式,试图根据实际情况使用合适的方式创建对象.基本的对象创建方式可能会导致设计上的问题,或增 ...

  6. boost学习 内嵌类型检测 与 any 的代码练习

    本文是学习 boost源码的一些练习 参考文章来自 刘未鹏 C++的罗浮宫(http://blog.csdn.net/pongba) 目录 http://blog.csdn.net/pongba/ar ...

  7. NFS服务简介与配置

    NFS简介 NFS特点 NFS(Network File System)即网络文件系统,是FreeBSD支持的文件系统中的一种,它允许网络中的计算机之间通过TCP/IP网络共享资源 在NFS的应用中, ...

  8. 系统性能--CPU

    对于cpu,目前比较关心的是cpu的利用率还有cpu的load,或者还有cpu运行队列. cpu利用率 cpu利用率分为sys,us.分别为操作系统和用户进程所占用的cpu利用率.sys的占用,一般是 ...

  9. Spring AOP中pointcut expression表达式

    Pointcut 是指那些方法需要被执行"AOP",是由"Pointcut Expression"来描述的. Pointcut可以有下列方式来定义或者通过&am ...

  10. Alpha冲刺 - (5/10)

    Part.1 开篇 队名:彳艮彳亍团队 组长博客:戳我进入 作业博客:班级博客本次作业的链接 Part.2 成员汇报 过去两天完成了哪些任务 基于ssm框架的前后端交互测试,结合微信小程序demo 展 ...