CF662C Binary Table

一道 FWT 的板子…比较难想就是了

有一个 \(n\) 行 \(m\) 列的表格,每个元素都是 \(0/1\),每次操作可以选择一行或一列,把 \(0/1\) 翻转,即把 \(0\) 换为 \(1\) ,把 \(1\) 换为 \(0\) 。请问经过若干次操作后,表格中最少有多少个 \(1\)。

\(1 \leq n \leq 20\)

\(1 \leq m \leq 10^5\)

先说说 FWT 干嘛的吧

\(F_k = \sum_{i \oplus j=k} a_i * b_j\)

首先呢 这题其实是有个暴力做法的

(认为是 n 行 m 列的一个矩阵)

复杂度大概是 \(2^n * m\)

就是你暴力搞 \(n\) 枚举每个状态复杂度自然是 \(2^n\) 的 然后你每次搜索/状压 搞到一个地方之后 算当前列的 0/1 个数取 \(min\) 因为列是可以翻转的…

暴力做法 没了 但是这种做法在CF里并不给分所以没啥用

但是对以下的做题有大用处

你可以把最开始矩阵 \(m\) 列状压 \(n\) 这样就成了个二进制

然后 \(a\) 数组计数

\(b_i\) 数组表示 i 的 0的个数,1的个数取 min

然后如果对矩阵变换也可以表示成状态 那么就是最开始的状态 \(i \oplus k\)

然而可以发现

\(i\oplus j=k\) 可以变成 \(i\oplus k=j\)

然后 FWT 还是可以用的

直接跑板子

因为你最开始变换的是 \(k\) 最后要枚举取个 \(min\) 求最优解

这题没了…

#include <bits/stdc++.h>
#define int long long
#define rep(a , b , c) for(int a = b ; a <= c ; ++ a)
#define Rep(a , b , c) for(int a = b ; a >= c ; -- a)
#define go(u) for(int i = G.head[u] , v = G.to[i] , w = G.dis[i] ; i ; v = G.to[i = G.nxt[i]] , w = G.dis[i]) using namespace std ;
using ll = long long ;
using pii = pair < int , int > ;
using vi = vector < int > ; int read() {
int x = 0 ; bool f = 1 ; char c = getchar() ;
while(c < 48 || c > 57) { if(c == '-') f = 0 ; c = getchar() ; }
while(c > 47 && c < 58) { x = (x << 1) + (x << 3) + (c & 15) ; c = getchar() ; }
return f ? x : -x ;
} template <class T> void print(T x , char c = '\n') {
static char st[100] ; int stp = 0 ;
if(! x) { putchar('0') ; }
if(x < 0) { x = -x ; putchar('-') ; }
while(x) { st[++ stp] = x % 10 ^ 48 ; x /= 10 ; }
while(stp) { putchar(st[stp --]) ; } putchar(c) ;
} template <class T> void cmax(T & x , T y) { x < y ? x = y : 0 ; }
template <class T> void cmin(T & x , T y) { x > y ? x = y : 0 ; } const int _N = 1e6 + 10 ;
struct Group {
int head[_N] , nxt[_N << 1] , to[_N] , dis[_N] , cnt = 1 ;
Group () { memset(head , 0 , sizeof(head)) ; }
void add(int u , int v , int w = 1) { nxt[++ cnt] = head[u] ; to[cnt] = v ; dis[cnt] = w ; head[u] = cnt ; }
} ; const int N = 1 << 21 ;
typedef int arr[N] ; int n , m ;
void FWT(int * a) {
for(int d = 1 ; d <= n - 1 ; d <<= 1) {
for(int i = 0 ; i <= n - 1 ; i += (d << 1))
rep(j , 0 , d - 1) {
int x = a[i + j] , y = a[i + j + d] ;
a[i + j] = x + y ;
a[i + j + d] = x - y ;
}
}
}
void IFWT(int * a) {
for(int d = 1 ; d <= n - 1 ; d <<= 1) {
for(int i = 0 ; i <= n - 1 ; i += (d << 1))
rep(j , 0 , d - 1) {
int x = a[i + j] , y = a[i + j + d] ;
a[i + j] = x + y >> 1 ;
a[i + j + d] = x - y >> 1 ;
}
}
}
int digit() {
char c = getchar() ;
while(! (c >= 48 && c <= 57)) c = getchar() ;
if(c == 49) return 1 ;
return 0 ;
}
arr a , b , f , g , cnt ;
signed main() {
n = read() ; m = read() ;
rep(i , 0 , n - 1) {
rep(j , 0 , m - 1) {
if(digit())
g[j] |= (1 << i) ;
}
}
rep(i , 0 , m - 1) a[g[i]] ++ ;
int nn = n ;
n = 1 << n ;
rep(i , 1 , n - 1) cnt[i] = cnt[i >> 1] + (i & 1) ;
rep(i , 0 , n - 1) b[i] = min(cnt[i] , nn - cnt[i]) ;
FWT(a) ; FWT(b) ;
rep(i , 0 , n - 1) a[i] *= b[i] ;
IFWT(a) ;
ll ans = 1e18 ;
rep(i , 0 , n - 1) ans = min(ans , a[i]) ;
print(ans) ;
return 0 ;
}

[CF662C Binary Table][状压+FWT]的更多相关文章

  1. Codeforces.662C.Binary Table(状压 FWT)

    题目链接 \(Description\) 给定一个\(n\times m\)的\(01\)矩阵,你可以选择一些行和一些列并将其中所有的\(01\)反转.求操作后最少剩下多少个\(1\). \(n\le ...

  2. CF662C Binary Table【FWT】

    CF662C Binary Table 题意: 给出一个\(n\times m\)的\(01\)矩阵,每次可以反转一行或者一列,问经过若干次反转之后,最少有多少个\(1\) \(n\le 20, m\ ...

  3. CF662C Binary Table FWT

    传送门 \(N \leq 20\)很小诶 一个暴力的思路是枚举行的翻转状态然后在列上贪心 复杂度为\(O(2^NM)\)显然过不去 考虑到可能有若干列的初始状态是一样的,那么在任意反转之后他们贪心的策 ...

  4. CF662C Binary Table (快速沃尔什变换FWT)

    题面 题解 我们会发现,如果单独的一列或一行,它的答案是O1确定的,如果确定了每一行是否变换,那么最后的答案也就简单了许多, 如果确定了行的变换状压下来是x(即x的i位表示第i行是否变换,理解就行), ...

  5. CF662C Binary Table 【状压 + FWT】

    题目链接 CF662C 题解 行比较少,容易想到将每一列的状态压缩 在行操作固定的情况下,容易发现每一列的操作就是翻转\(0\)和\(1\),要取最小方案,方案唯一 所以我们只需求出每一种操作的答案 ...

  6. CF662C Binary Table 枚举 FWT

    题面 洛谷题面 (虽然洛谷最近有点慢) 题解 观察到行列的数据范围相差悬殊,而且行的数量仅有20,完全可以支持枚举,因此我们考虑枚举哪些行会翻转. 对于第i列,我们将它代表的01串提取出来,表示为\( ...

  7. CF662C Binary Table (FWT板题)

    复习了一发FWT,发现还挺简单的... 没时间写了,就放一个博客吧:Great_Influence 的博客 注意这一句ans[i]=∑j⊗k=i​f[j]∗dp[k]ans[i]= ∑_{j⊗k=i} ...

  8. [CF662C] Binary Table(FWT)

    题意: https://www.cnblogs.com/cjyyb/p/9065801.html 题解:

  9. [CF662C]Binary Table

    luogu 题意 你有一个\(n*m\)的\(01\)矩阵.你可以把任意一行或者一列的\(01\)取反.求矩阵中最少的\(1\)的数量. \(n\le20,m\le10^5\) sol 很自然地有一个 ...

随机推荐

  1. Luinx安装RocketMQ

    一.RocketMQ环境 准备两台虚拟机,分别为master01 和master02 二.安装JDK(两台虚拟机相同步骤) 1. 检查当前虚拟机环境有没有JDK rpm -qa|grep java ( ...

  2. 安装MinGW出现 mingw-get: *** ERROR *** Get package:

    个人的解决方法: 1.手机开个热点让电脑连上. 2.在Setting里面讲proxy关闭.

  3. 大数据篇:Zookeeper

    Zookeeper 1 Zookeeper概念 Zookeeper是什么 是一个基于观察者设计模式的分布式服务管理框架,它负责和管理需要关心的数据,然后接受观察者的注册,一旦这些数据的状态发生变化,Z ...

  4. python学习(6)选择排序算法简单代码

    选择排序的基本思想是:每一趟在n-i+1(i=1,2,…n-1)个记录中选取关键字最小的记录作为有序序列中第i个记录.基于此思想的算法主要有简单选择排序.树型选择排序和堆排序.[1] 简单选择排序的基 ...

  5. NR / 5G - Polar Coding

    5G New Radio Polar Coding Introduction The selection of polar codes as the channel coding technique ...

  6. Andriod you must restart adb and eclipse

    今天看着视频 学习着 andriod ,启动 的时候 竟然报错 我试了N种google来的方法,都失效,现在把我的解决方法告诉大家,希望能帮到大家. 首先,我先罗列下我搜到的方法,大家也可以尝试. 1 ...

  7. 以stm32f407为例,学习cortex-m4通用寄存器的用法

    测试代码如下: int add(int a, int b, int c, int d, int e, int f) { return a+b+c+d+e+f; } int main(void) { i ...

  8. lwip nd没有实现ra,contik有参考

    lwip中关于nd的实现,没有路由器的功能,不能发送ra 在contiki中发现有nd发送ra的实现, contiki/core/net/ipv6/uip-ds6.c 在rs的接收处理中,发送soll ...

  9. php/phpmyadmin新手式环境搭建

    之前就在折腾 zabbix 的时候遇到一个情况, 安装 php6 的时候各种库丢失, 最重要的 gd 经常跑路 只是无意中遇到了一种小方式, 现在已经迷糊了, 前天因为在部署 phpAdmin 的时候 ...

  10. web渗透之XSS基本介绍

    想学XSS必须得有基本得JS知识 JS基础BOM XSS漏洞原理 XSS(Cross Site Script),全称跨站脚本攻击.它指的是攻击者往web页面或者url里插入恶意JavaScript脚本 ...