...就是N皇后

输出前三种可能排序

输出所有可能排序的方法数

vis[0][i]为i点是否已用

vis[1][m+i]为i点副对角线是否已用  m+i 为从左至右第 m+i 条副对角线

vis[1][m+n-i]为i点主对角线是否已用 m+n-i 为从右至左第 m+n-i 条主对角线

#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<cstring>
#include<math.h>
using namespace std;
int n,cnt;
int ans[],vis[][];
void DFS(int m)
{
if(m==n+)
{
cnt++;
if(cnt<=)
{
for(int i=;i<n;i++)
printf("%d ",ans[i]);
printf("%d\n",ans[n]);
}
return ;
}
for(int i=;i<=n;i++)
{
if(!vis[][i]&&!vis[][m+i]&&!vis[][m-i+n])
{
vis[][i]=vis[][m+i]=vis[][m-i+n]=;
ans[m]=i; DFS(m+);
vis[][i]=vis[][m+i]=vis[][m-i+n]=;
}
}
}
int main()
{
while(~scanf("%d",&n))
{
memset(ans,,sizeof(ans));
cnt=; DFS();
printf("%d\n",cnt);
} return ;
}

USACO training course Checker Challenge N皇后 /// oj10125的更多相关文章

  1. USACO 6.5 Checker Challenge

    Checker Challenge Examine the 6x6 checkerboard below and note that the six checkers are arranged on ...

  2. 『嗨威说』算法设计与分析 - 回溯法思想小结(USACO-cha1-sec1.5 Checker Challenge 八皇后升级版)

    本文索引目录: 一.回溯算法的基本思想以及个人理解 二.“子集和”问题的解空间结构和约束函数 三.一道经典回溯法题点拨升华回溯法思想 四.结对编程情况 一.回溯算法的基本思想以及个人理解: 1.1 基 ...

  3. USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)

    Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...

  4. USACO1.5 Checker Challenge(类n皇后问题)

    B - B Time Limit:1000MS     Memory Limit:16000KB     64bit IO Format:%lld & %llu   Description E ...

  5. Checker Challenge跳棋的挑战(n皇后问题)

    Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...

  6. TZOJ 3522 Checker Challenge(深搜)

    描述 Examine the 6x6 checkerboard below and note that the six checkers are arranged on the board so th ...

  7. 关于USACO Training

    做了这么久的题目,突然发现最经典的 USACO Training 还没有做过?加速水一遍吧!我会把题解放在上面的.

  8. USACO Training Section 1.1 坏掉的项链Broken Necklace

    题目描述 你有一条由N个红色的,白色的,或蓝色的珠子组成的项链(3<=N<=350),珠子是随意安排的. 这里是 n=29 的二个例子: 第一和第二个珠子在图片中已经被作记号. 图片 A ...

  9. USACO Training Section 1.1 贪婪的送礼者Greedy Gift Givers

    P1201 [USACO1.1]贪婪的送礼者Greedy Gift Givers 题目描述 对于一群(NP个)要互送礼物的朋友,GY要确定每个人送出的钱比收到的多多少.在这一个问题中,每个人都准备了一 ...

随机推荐

  1. 【JZOJ6411】上网

    description analysis 如果把所有大小关系连成边,小的往大的连,就可以直接上拓扑 暴力连边时间复杂度\(O(n^2)\),然而连边的过程,考虑用线段树优化 线段树上的所有儿子节点向父 ...

  2. ul -- li 模拟select下拉框

    在写项目中 用到下拉框,一般用 <select name="" id=""> <option value=</option> &l ...

  3. 线程池 一 ScheduledThreadPoolExecutor

    java.util.concurrent public class ScheduledThreadPoolExecutor extends ThreadPoolExecutor implements ...

  4. Android SDK Download

    { https://www.androiddevtools.cn/ }

  5. Python获取房价信息和导出EXCEL

    房价与生活息息相关,那么各地区房价情况和差别咋样呢?  可以打开网站或手机APP去查询一下,不过查看到的数据有限,很不过瘾~ 作为一个合格的程序员,要懂得用代码解决问题! 第一步:打开一个房产交易平台 ...

  6. HDU-6070 Dirt Ratio(二分+线段树+分数规划)

    目录 目录 思路: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 目录 题意:传送门  原题目描述在最下面.  求\(sum/len\)最小值.\(sum\)是一段区间内不同数字的 ...

  7. class9_Menubar 菜单

    最终的运行效果图(程序见序号5) #!/usr/bin/env python# -*- coding:utf-8 -*-# -------------------------------------- ...

  8. JavaScript网页特效5则

    动态字幕 代码:在需要处加入 < marquee onmouseover=this.stop() onmouseout=this.start()>欢迎访问JavaScript教程网 特点: ...

  9. Linux CPU负载状态:%us/%sy/%ni/%id/%wa/%hi/%si/%st含义

    原文 Linux CPU负载状态:%us/%sy/%ni/%id/%wa/%hi/%si/%st含义 缙哥哥发现用了雅黑的探针,在 Linux 的 CPU 状态信息中发现,有“%us.%sy.%ni. ...

  10. Nginx配置web服务

    Nginx配置虚拟主机 虚拟主机概述 所谓虚拟主机,在web服务里就是一个独立的网站站点,这个站点对应独立的域名(也可以是IP或者端口),具有独立的程序及资源目录,可以独立的对外提供服务,继而给用户访 ...