在分布式调度中为了保证服务的高可用和容灾需求,通常都会讲服务在多个区域、机架、节点上平均分布,从而避免单点故障引起的服务不可用,在k8s中自然也实现了该算法即SelectorSpread, 本文就来学习下这个算法的底层实现细节

1. 设计要点

1.1 zone与node

zone即代表一个区域,node则是一个具体的节点,而该打散算法的目标就是将pod在zone和node之间进行打散操作

1.2 namespace

namespace是k8s中进行资源隔离的实现,同样的筛选也是如此,在筛选的过程中,不同namespace下面的pod并不会相互影响

1.3 计数与聚合

SelectorSpread算法是scheduler中优先级算法的一种,其实现了优先级算法的map/reduce方法,其中map阶段需要完成对各个节点亲和性的统计, 也就是统计该节点上的匹配的pod的数量,而reduce阶段则是聚合所有匹配的数量,进行统计打分

1.4 参考对象

在k8s中有很多上层对象诸如service、replicaSet、statefulset等,而算法打散的对象也是依据这些上层对象,让单个service的多个pod进行平均分布

1.5 选择器



在传统的基于数据库的设计中,数据之间的关联关系通常是基于外键或者对象id来实现模型之间的关联,而在kubernetes中则是通过selector来进行这种关系的映射,通过给对象定义不同的label然后在label上构造选择器,从而实现各种资源之间的相互关联

2. 实现原理

2.1 选择器

2.1.1 选择器接口

选择器接口其关键方法主要是通过Matches来进行一组标签的匹配,先关注这些就可以了,后续需要再去关注其核心实现

type Selector interface {
// Matches returns true if this selector matches the given set of labels.
Matches(Labels) bool
// String returns a human readable string that represents this selector.
String() string // Add adds requirements to the Selector
Add(r ...Requirement) Selector
}

2.1.2 资源筛选



Selector数组的实现其实也很简单,就是遍历所有相关联的资源,然后用当前的pod上的Label标签去搜索,如果发现有资源包含当前pod的标签,就把对应资源的所有Selector都获取出来,加入到selectors数组中


func getSelectors(pod *v1.Pod, sl algorithm.ServiceLister, cl algorithm.ControllerLister, rsl algorithm.ReplicaSetLister, ssl algorithm.StatefulSetLister) []labels.Selector {
var selectors []labels.Selector
if services, err := sl.GetPodServices(pod); err == nil {
for _, service := range services {
selectors = append(selectors, labels.SelectorFromSet(service.Spec.Selector))
}
}
if rcs, err := cl.GetPodControllers(pod); err == nil {
for _, rc := range rcs {
selectors = append(selectors, labels.SelectorFromSet(rc.Spec.Selector))
}
}
if rss, err := rsl.GetPodReplicaSets(pod); err == nil {
for _, rs := range rss {
if selector, err := metav1.LabelSelectorAsSelector(rs.Spec.Selector); err == nil {
selectors = append(selectors, selector)
}
}
}
if sss, err := ssl.GetPodStatefulSets(pod); err == nil {
for _, ss := range sss {
if selector, err := metav1.LabelSelectorAsSelector(ss.Spec.Selector); err == nil {
selectors = append(selectors, selector)
}
}
}
return selectors
}

2.1 算法注册与初始化

2.1.1 算法注册

在构建算法的时候,首先会从参数中获取各种资源的Lister, 其实就是筛选对象的一个接口,可以从该接口中获取集群中对应类型的所有资源

	factory.RegisterPriorityConfigFactory(
priorities.SelectorSpreadPriority,
factory.PriorityConfigFactory{
MapReduceFunction: func(args factory.PluginFactoryArgs) (priorities.PriorityMapFunction, priorities.PriorityReduceFunction) {
return priorities.NewSelectorSpreadPriority(args.ServiceLister, args.ControllerLister, args.ReplicaSetLister, args.StatefulSetLister)
},
Weight: 1,
},
)

2.1.2 算法初始化

算法初始化则是构建一个SelectorSpread对象,我们可以看到其map和reduce的关键实现分别对应内部的两个方法

func NewSelectorSpreadPriority(
serviceLister algorithm.ServiceLister,
controllerLister algorithm.ControllerLister,
replicaSetLister algorithm.ReplicaSetLister,
statefulSetLister algorithm.StatefulSetLister) (PriorityMapFunction, PriorityReduceFunction) {
selectorSpread := &SelectorSpread{
serviceLister: serviceLister,
controllerLister: controllerLister,
replicaSetLister: replicaSetLister,
statefulSetLister: statefulSetLister,
}
return selectorSpread.CalculateSpreadPriorityMap, selectorSpread.CalculateSpreadPriorityReduce
}

2.2 CalculateSpreadPriorityMap

2.2.1 构建选择器

在进行Map核心统计阶段之前会先根据当前的pod获取其上的选择器Selector数组,即当前pod有那些选择器相关联,这个是在创建meta的时候完成

	var selectors []labels.Selector
node := nodeInfo.Node()
if node == nil {
return schedulerapi.HostPriority{}, fmt.Errorf("node not found")
} priorityMeta, ok := meta.(*priorityMetadata)
if ok {
// 在priorityMeta构建的时候已经完成
selectors = priorityMeta.podSelectors
} else {
// 获取当前pod的所有的selector 包括service rs rc
selectors = getSelectors(pod, s.serviceLister, s.controllerLister, s.replicaSetLister, s.statefulSetLister)
} if len(selectors) == 0 {
return schedulerapi.HostPriority{
Host: node.Name,
Score: int(0),
}, nil
}

2.2.2 统计匹配计数



统计计数其实就是根据上面的selector数组逐个遍历当前node上面的所有pod如果发现全都匹配则计数一次,最后返回当前节点上匹配的pod的数量(这里的匹配是指的所有都匹配即跟当前的pod的所有label匹配都一样)

func countMatchingPods(namespace string, selectors []labels.Selector, nodeInfo *schedulernodeinfo.NodeInfo) int {
// 计算当前node上面匹配的node的数量
if nodeInfo.Pods() == nil || len(nodeInfo.Pods()) == 0 || len(selectors) == 0 {
return 0
}
count := 0
for _, pod := range nodeInfo.Pods() {
// 这里会跳过不同namespace和被删除的pod
if namespace == pod.Namespace && pod.DeletionTimestamp == nil {
matches := true
// 遍历所有的选择器,如果不匹配,则会立马跳出
for _, selector := range selectors {
if !selector.Matches(labels.Set(pod.Labels)) {
matches = false
break
}
}
if matches {
count++ // 记录当前节点上匹配的pod的数量
}
}
}
return count
}

2.2.3 返回统计结果

最后返回对应node的名字和node上的匹配的pod的数量

	count := countMatchingPods(pod.Namespace, selectors, nodeInfo)

	return schedulerapi.HostPriority{
Host: node.Name,
Score: count,
}, nil

2.4 CalculateAntiAffinityPriorityReduce

2.4.1 计数器

计数器主要包含三个:单个node上最大的pod数量、单个zone里面最大pod的数量、每个zone中pod的数量

	countsByZone := make(map[string]int, 10)
maxCountByZone := int(0)
maxCountByNodeName := int(0)

2.4.2 单节点最大统计与zone区域聚合

	for i := range result {
if result[i].Score > maxCountByNodeName {
maxCountByNodeName = result[i].Score // 寻找单节点上的最大pod数量
}
zoneID := utilnode.GetZoneKey(nodeNameToInfo[result[i].Host].Node())
if zoneID == "" {
continue
}
// 进行zone所有node匹配pod的聚合
countsByZone[zoneID] += result[i].Score
}

2.4.3 zone最大值统计

	for zoneID := range countsByZone {
if countsByZone[zoneID] > maxCountByZone {
maxCountByZone = countsByZone[zoneID]
}
}

2.4.4 核心计算打分算法



核心打分算法流程包含两个级别:node级别和zone级别,其算法为:

node: 10 * ((单节点最大匹配数量)-当前node的匹配数量)/最大节点匹配数量) = fscode

zone: 10 * ((单zone最大匹配数量)-当前zone的匹配数量)/最大zone匹配数量) = zoneScore

合并: fScore * (1.0 - zoneWeighting)) + (zoneWeighting * zoneScore (zoneWeighting=2/3)

即优先进行zone级别分布,其次再是node

比如分别有3个node其匹配pod数量分别为:

node1:3, node2:5, node3:10 则打分结果为:

node1: 10 * ((10-3)/10) = 7

node2: 10 * ((10-5)/10) = 5

node3: (10* ((10-5)/10) = 0

可以看到其上匹配的pod数量越多最终的优先级则越小

假设分别有3个zone(跟node编号相同), 则zone得分为:zone1=7, zone2=5, zone3=0

最终计分(zoneWeighting=2/3): node1=7, node2=5, node3=0

	maxCountByNodeNameFloat64 := float64(maxCountByNodeName)
maxCountByZoneFloat64 := float64(maxCountByZone)
MaxPriorityFloat64 := float64(schedulerapi.MaxPriority) for i := range result {
// initializing to the default/max node score of maxPriority
fScore := MaxPriorityFloat64
if maxCountByNodeName > 0 {
fScore = MaxPriorityFloat64 * (float64(maxCountByNodeName-result[i].Score) / maxCountByNodeNameFloat64)
}
// If there is zone information present, incorporate it
if haveZones {
zoneID := utilnode.GetZoneKey(nodeNameToInfo[result[i].Host].Node())
if zoneID != "" {
zoneScore := MaxPriorityFloat64
if maxCountByZone > 0 {
zoneScore = MaxPriorityFloat64 * (float64(maxCountByZone-countsByZone[zoneID]) / maxCountByZoneFloat64)
}
fScore = (fScore * (1.0 - zoneWeighting)) + (zoneWeighting * zoneScore)
}
}
result[i].Score = int(fScore)
if klog.V(10) {
klog.Infof(
"%v -> %v: SelectorSpreadPriority, Score: (%d)", pod.Name, result[i].Host, int(fScore),
)
}
}

今天就到这里吧,其实可以看出在分布的时候,是会优先尝试zone分布,然后在进行节点分布,我比较好奇zoneWeighting=2/3这个值是怎么来的,从注释上看,老外也没有证明,可能就是为了倾斜zone吧,大家周末愉快

微信号:baxiaoshi2020

关注公告号阅读更多源码分析文章

更多文章关注 www.sreguide.com

本文由博客一文多发平台 OpenWrite 发布

图解kubernetes服务打散算法的实现源码的更多相关文章

  1. 图解 Java IO : 二、FilenameFilter源码

    Writer      :BYSocket(泥沙砖瓦浆木匠) 微         博:BYSocket 豆         瓣:BYSocket FaceBook:BYSocket Twitter   ...

  2. 原创:用python把链接指向的网页直接生成图片的http服务及网站(含源码及思想)

    原创:用python把链接指向的网页直接生成图片的http服务及网站(含源码及思想) 总体思想:     希望让调用方通过 http调用传入一个需要生成图片的网页链接生成一个网页的图片并返回图片链接 ...

  3. netty服务端启动--ServerBootstrap源码解析

    netty服务端启动--ServerBootstrap源码解析 前面的第一篇文章中,我以spark中的netty客户端的创建为切入点,分析了netty的客户端引导类Bootstrap的参数设置以及启动 ...

  4. kubernetes垃圾回收器GarbageCollector Controller源码分析(二)

    kubernetes版本:1.13.2 接上一节:kubernetes垃圾回收器GarbageCollector Controller源码分析(一) 主要步骤 GarbageCollector Con ...

  5. 【一起学源码-微服务】Nexflix Eureka 源码六:在眼花缭乱的代码中,EurekaClient是如何注册的?

    前言 上一讲已经讲解了EurekaClient的启动流程,到了这里已经有6篇Eureka源码分析的文章了,看了下之前的文章,感觉代码成分太多,会影响阅读,后面会只截取主要的代码,加上注释讲解. 这一讲 ...

  6. 【一起学源码-微服务】Nexflix Eureka 源码七:通过单元测试来Debug Eureka注册过程

    前言 上一讲eureka client是如何注册的,一直跟到源码发送http请求为止,当时看eureka client注册时如此费尽,光是找一个regiter的地方就找了半天,那么client端发送了 ...

  7. 【一起学源码-微服务】Nexflix Eureka 源码九:服务续约源码分析

    前言 前情回顾 上一讲 我们讲解了服务发现的相关逻辑,所谓服务发现 其实就是注册表抓取,服务实例默认每隔30s去注册中心抓取一下注册表增量数据,然后合并本地注册表数据,最后有个hash对比的操作. 本 ...

  8. 【一起学源码-微服务】Nexflix Eureka 源码十:服务下线及实例摘除,一个client下线到底多久才会被其他实例感知?

    前言 前情回顾 上一讲我们讲了 client端向server端发送心跳检查,也是默认每30钟发送一次,server端接收后会更新注册表的一个时间戳属性,然后一次心跳(续约)也就完成了. 本讲目录 这一 ...

  9. 【一起学源码-微服务】Nexflix Eureka 源码十一:EurekaServer自我保护机制竟然有这么多Bug?

    前言 前情回顾 上一讲主要讲了服务下线,已经注册中心自动感知宕机的服务. 其实上一讲已经包含了很多EurekaServer自我保护的代码,其中还发现了1.7.x(1.9.x)包含的一些bug,但这些问 ...

随机推荐

  1. Laravel基本使用、生成Cookie、返回视图、JSON/JSONP、文件下载及重定向

    https://yq.aliyun.com/ziliao/23889 1.Response篇 1.1 基本响应 最基本的HTTP响应只需在路由闭包或控制器动作中返回一个简单字符串即可,但是具体业务逻辑 ...

  2. CSS 伸缩布局

    转载于:https://blog.csdn.net/weixin_41342585/article/details/80140513 1. flex-direction:设置伸缩容器中成员的排列方式 ...

  3. Laravel5 call to undefined function openssl cipher iv length() 报错 PHP7开启OpenSSL扩展失败

    在安装laravel5.5后, 访问显示报错. call to undefined function openssl cipher iv length() 经查为php7.1的OpenSSL扩展加载失 ...

  4. java用普通类如何实现枚举功能

    用普通类如何实现枚举功能,定义一个Weekday的类来模拟枚举功能.     1.私有的构造方法.     2.每个元素分别用一个公有的静态成员变量表示.      可以有若干公有方法或抽象方法.采用 ...

  5. springboot上传文件时500错误,提示临时目录无效

    org.springframework.web.multipart.MultipartException: Could not parse multipart servlet request; nes ...

  6. 2018-10-22-win10-uwp-自定义控件入门

    title author date CreateTime categories win10 uwp 自定义控件入门 lindexi 2018-10-22 09:47:54 +0800 2018-10- ...

  7. H3C 主动方式建立连接过程

  8. linux虚拟机设置固定IP并实现联网,主机与虚拟机实现互ping

    ifconfig eth0 up 启用第一块网卡 onboot=yes 自动启动 service network restart 重启网络服务 使用虚拟机添加一块桥接网卡 cp eth0 eth1 复 ...

  9. vue-learning:26 - component - 组件三大API之一:prop

    组件三大API之一: prop prop的大小写 prop接收类型 字符串数组形式 对象形式: type / required / default / validator prop传递类型: 静态传递 ...

  10. koa2入门--02.koa2路由

    首先输入在项目文件下使用cmd,输入 npm install koa-router --save const koa = require('koa');//引入koa const Router = r ...