Suppose a bank has K windows open for service. There is a yellow line in front of the windows which devides the waiting area into two parts. All the customers have to wait in line behind the yellow line, until it is his/her turn to be served and there is a window available. It is assumed that no window can be occupied by a single customer for more than 1 hour.

Now given the arriving time T and the processing time P of each customer, you are supposed to tell the average waiting time of all the customers.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 numbers: N (≤104) - the total number of customers, and K (≤100) - the number of windows. Then N lines follow, each contains 2 times: HH:MM:SS - the arriving time, and P - the processing time in minutes of a customer. Here HH is in the range [00, 23], MM and SS are both in [00, 59]. It is assumed that no two customers arrives at the same time.

Notice that the bank opens from 08:00 to 17:00. Anyone arrives early will have to wait in line till 08:00, and anyone comes too late (at or after 17:00:01) will not be served nor counted into the average.

Output Specification:

For each test case, print in one line the average waiting time of all the customers, in minutes and accurate up to 1 decimal place.

Sample Input:

7 3
07:55:00 16
17:00:01 2
07:59:59 15
08:01:00 60
08:00:00 30
08:00:02 2
08:03:00 10

Sample Output:

8.2

思路

把每个时间都转换为秒,方便比较大小。

按照到达时间进行排序,把到达时间大于17*3600的直接不予考虑。

用一个vector记录每个窗口可以接待用户的时间。

​ 一开始时,每个窗口的可以接待用户的时间都是8*3600

​ 从第一个顾客开始扫描到最后一个顾客,令t为所有窗口中最早结束的时间,c[i].t为第i个顾客到达的时间,c[i].cost为第i个顾客办理业务的时间,sum记录所有顾客等待的时间,则

​ 若c[i].t > t ,则 t = c[i].t + c[i].cost

​ 否则,t += c[i].cost, sum += t - c[i].t

答案就是sum/60.0/N (N为删除到达时间在17*3600之后的顾客人数)

代码

#include <stdio.h>
#include <string>
#include <stdlib.h>
#include <iostream>
#include <vector>
#include <string.h>
#include <algorithm>
#include <cmath>
#include <map>
#include <queue>
#include <functional>
#include <limits.h>
using namespace std; struct customer{
int t;
int cost;
bool operator< (customer a) const {
return t < a.t;
}
}; int N, K;
customer c[10000 + 10];
priority_queue<int, vector<int>, greater<int> > myq;
vector<int> myv;
int sum = 0;
int main() {
//input
cin >> N >> K;
int h, m, s, cost;
for(int i = 0; i < N; i++){
scanf("%d:%d:%d%d", &h, &m, &s, &cost);
c[i].t = h * 3600 + m * 60 + s;
c[i].cost = min(60 * 60, cost * 60);
} // init
sort(c, c + N);
for(int i = N - 1; i >= 0; i--){
if(c[i].t > 17 * 3600) N--;
}
for(int i = 0; i < K; i++){
myv.push_back(8 * 3600);
} // do it
for(int i = 0; i < N; i++){
vector<int>::iterator j = min_element(myv.begin(), myv.end());
if(*j < c[i].t){
*j = c[i].t + c[i].cost;
}
else{
sum += *j - c[i].t;
*j += c[i].cost;
}
}
printf("%0.1lf", sum / 60.0 / N);
return 0;
}

PAT 1017 Queueing at Bank (模拟)的更多相关文章

  1. PAT 1017 Queueing at Bank (模拟)

    1017. Queueing at Bank (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Supp ...

  2. PAT 1017 Queueing at Bank[一般]

    1017 Queueing at Bank (25)(25 分)提问 Suppose a bank has K windows open for service. There is a yellow ...

  3. pat——1017. Queueing at Bank (java中Map用法)

    由PAT1017例题展开: Suppose a bank has K windows open for service. There is a yellow line in front of the ...

  4. PAT 1017 Queueing at Bank (25) (坑题)

    Suppose a bank has K windows open for service. There is a yellow line in front of the windows which ...

  5. PAT 1017. Queueing at Bank

    Suppose a bank has K windows open for service.  There is a yellow line in front of the windows which ...

  6. PAT 甲级 1017 Queueing at Bank (25 分)(模拟题,有点思维小技巧,第二次做才理清思路)

    1017 Queueing at Bank (25 分)   Suppose a bank has K windows open for service. There is a yellow line ...

  7. PAT甲级1017. Queueing at Bank

    PAT甲级1017. Queueing at Bank 题意: 假设一家银行有K台开放服务.窗前有一条黄线,将等候区分为两部分.所有的客户都必须在黄线后面排队,直到他/她轮到服务,并有一个可用的窗口. ...

  8. PAT甲题题解-1017. Queueing at Bank (25)-模拟

    有n个客户和k个窗口,给出n个客户的到达时间和需要的时长有空闲的窗口就去办理,没有的话就需要等待,求客户的平均时长.如果在8点前来的,就需要等到8点.如果17点以后来的,则不会被服务,无需考虑. 按客 ...

  9. PAT (Advanced Level) 1017. Queueing at Bank (25)

    简单模拟. #include<iostream> #include<cstring> #include<cmath> #include<algorithm&g ...

随机推荐

  1. uipath_excel

    1.excel建表 https://jingyan.baidu.com/article/95c9d20d0ee5e2ec4e75618d.html 2.具体操作 https://blog.csdn.n ...

  2. 在docker上部署centos

    1.查找镜像源$ docker search centosNAME DESCRIPTION STARS OFFICIALcentos The official build of CentOS. 385 ...

  3. 洛谷P1582 倒水 二进制的相关应用

    https://www.luogu.org/problem/P1582 #include<bits/stdc++.h> using namespace std; long long N,K ...

  4. Jquery插件 之 zTree树加载

    原文链接:https://blog.csdn.net/jiaqu2177/article/details/80626730 zTree树加载 zTree 是一个依靠 jQuery 实现的多功能 “树插 ...

  5. codeforces 1284E. New Year and Castle Construction(极角排序+扫描枚举)

    链接:https://codeforces.com/problemset/problem/1284/E 题意:平面上有n个点,问你存在多少组四个点围成的四边形 严格包围某个点P的情况.不存在三点共线. ...

  6. python练手

    练习实例3 题目:一个整数,它加上100后是一个完全平方数,再加上168又是一个完全平方数,请问该数是多少? 程序分析: 假设该数为 x. 1.则:x + 100 = n2, x + 100 + 16 ...

  7. helm安装异常解决方案

    问题1:helm version正常 helm list 异常报错如下 解决方法: [root@MASTER1 ~]# helm init --service-account tiller --til ...

  8. mybatis-plus - 初识

    一. 集成 pom.xml <dependency> <groupId>com.alibaba</groupId> <artifactId>druid& ...

  9. 大数据-SparkStreaming

    SparkStreaming SparkStreaming是一种微批处理,准实时的流式框架.数据来源包括:Kafka, Flume,TCP sockets,Twitter,ZeroMQ等 SparkS ...

  10. n皇后(位运算)

    一般解法 算法思路: 对于所有的位置,判断能不能放: 能放就放,处理: 不可行,回溯: 剪枝: 不能在同一行 deep++; 不能在同一列 不能在同一斜线 check k; for(i = 1; i ...