【PKUWC2018】猎人杀
题目描述


题目分析
设\(W=\sum\limits_{i=1}^nw_i\),\(A=\sum\limits_{i=1}^nw_i[i\ is\ alive]\),\(P_i\)为下一个打中\(i\)的概率。
如果开枪打中了已经死亡的猎人,我们可以视作再开一枪,这样就不会产生影响,因此有
P_i&=\frac{W-A}{W}P_i+\frac{w_i}W\\
移项得\ P_i&=\frac{w_i}{A}
\end{split}
\]
考虑容斥,枚举\(S\),强制\(|S|\)个人在\(1\)后被射杀,其他随意,
所以可以视作打中其他人与打中死亡的猎人等价,可以再开一枪,
因此,\(1\)号猎人在其他\(|S|\)个猎人前被射杀的概率为\(P_1\)
ans&=\sum_S(-1)^{|S|}P_1\\
&=\sum_{S}(-1)^{|S|}\frac{w_1}{w_1+sum\_w_S}\\
&=w_1\sum_{S}(-1)^{|S|}\frac{1}{w_1+sum\_w_S}
\end{split}
\]
考虑生成函数,后面的和式等价于
\]
用分治+NTT求出,第\(i\)项的指数为\(sum\_w_S\),系数为满足这个\(sum\)的容斥系数和。
若生成函数为\(\sum\limits_{i=0}^\infty a_ix^i\),则
\]
代码实现
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=400005,mod=998244353;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int ksm(int x,int k){
int ret=1;
while(k){
if(k&1)ret=(LL)ret*x%mod;
x=(LL)x*x%mod,k>>=1;
}
return ret;
}
int rev[N];
void NTT(int *a,int x,int K){
int n=(1<<x);
for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int i=1;i<n;i<<=1){
int tmp=i<<1,wn=ksm(3,(mod-1)/tmp);
if(K==-1)wn=ksm(wn,mod-2);
for(int j=0;j<n;j+=tmp){
int w=1;
for(int k=0;k<i;k++,w=(LL)w*wn%mod){
int x=a[j+k],y=(LL)w*a[i+j+k]%mod;
a[j+k]=(x+y)%mod;a[i+j+k]=(x-y+mod)%mod;
}
}
}
if(K==-1){
int inv=ksm(n,mod-2);
for(int i=0;i<n;i++)a[i]=(LL)a[i]*inv%mod;
}
}
int w[N],sum[N];
void Binary(int *a,int l,int r){
if(l==r)return a[0]=1,a[w[l]]=mod-1,void();
int mid=l+r>>1;
int f[N],g[N];
memset(f,0,(sum[r]-sum[l-1]+1)<<3),memset(g,0,(sum[r]-sum[l-1]+1)<<3);
Binary(f,l,mid),Binary(g,mid+1,r);
int x=ceil(log2(sum[r]-sum[l-1]+2));
for(int i=0;i<(1<<x);i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
NTT(f,x,1),NTT(g,x,1);
for(int i=0;i<(1<<x);i++)a[i]=(LL)f[i]*g[i]%mod;
NTT(a,x,-1);
}
int a[N];
int main(){
int n=Getint(),t=Getint();
if(n==1)cout<<1,exit(0);n--;
for(int i=1;i<=n;i++)w[i]=Getint(),sum[i]=sum[i-1]+w[i];
Binary(a,1,n);
int ans=0;
for(int i=0;i<=sum[n];i++)
ans=(ans+(LL)a[i]*t%mod*ksm(t+i,mod-2)%mod)%mod;
cout<<ans;
return 0;
}
【PKUWC2018】猎人杀的更多相关文章
- LOJ2541 PKUWC2018 猎人杀 期望、容斥、生成函数、分治
传送门 首先,每一次有一个猎人死亡之后\(\sum w\)会变化,计算起来很麻烦,所以考虑在某一个猎人死亡之后给其打上标记,仍然计算他的\(w\),只是如果打中了一个打上了标记的人就重新选择.这样对应 ...
- LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)
考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #i ...
- [PKUWC2018]猎人杀
题解 感觉是一道神题,想不出来 问最后\(1\)号猎人存活的概率 发现根本没法记录状态 每次转移的分母也都不一样 可以考虑这样一件事情: 如果一个人被打中了 那么不急于从所有人中将ta删除,而是给ta ...
- 洛谷 P5644 - [PKUWC2018]猎人杀(分治+NTT)
题面传送门 很久之前(2020 年)就听说过这题了,这么经典的题怎么能只听说而亲自做一遍呢 首先注意到每次开枪打死一个猎人之后,打死其他猎人概率的分母就会发生变化,这将使我们维护起来非常棘手,因此我们 ...
- [LOJ2541][PKUWC2018]猎人杀(容斥+分治+FFT)
https://blog.csdn.net/Maxwei_wzj/article/details/80714129 n个二项式相乘可以用分治+FFT的方法,使用空间回收可以只开log个数组. #inc ...
- 【洛谷5644】[PKUWC2018] 猎人杀(容斥+生成函数+分治NTT)
点此看题面 大致题意: 有\(n\)个人相互开枪,每个人有一个仇恨度\(a_i\),每个人死后会开枪再打死另一个还活着的人,且第一枪由你打响.设当前剩余人仇恨度总和为\(k\),则每个人被打中的概率为 ...
- [LOJ2541] [PKUWC2018] 猎人杀
题目链接 LOJ:https://loj.ac/problem/2541 Solution 很巧妙的思路. 注意到运行的过程中概率的分母在不停的变化,这样会让我们很不好算,我们考虑这样转化:假设所有人 ...
- 题解-PKUWC2018 猎人杀
Problem loj2541 题意概要:给定 \(n\) 个人的倒霉度 \(\{w_i\}\),每回合会有一个人死亡,每个人这回合死亡的概率为 自己的倒霉度/目前所有存活玩家的倒霉度之和,求第 \( ...
- 「PKUWC2018」猎人杀
「PKUWC2018」猎人杀 解题思路 首先有一个很妙的结论是问题可以转化为已经死掉的猎人继续算在概率里面,每一轮一直开枪直到射死一个之前没死的猎人为止. 证明,设所有猎人的概率之和为 \(W\) , ...
- 【LOJ2541】【PKUWC2018】猎人杀(容斥,FFT)
[LOJ2541][PKUWC2018]猎人杀(容斥,FFT) 题面 LOJ 题解 这题好神仙啊. 直接考虑概率很麻烦,因为分母总是在变化. 但是,如果一个人死亡之后,我们不让他离场,假装给他打一个标 ...
随机推荐
- javaSE Comparable接口中的compareTo()方法
我们都知道,要对自建对象按照一定规则进行排序的话,要求自建对象实现Comparable接口,并重写compareTo() 方法,但compareTo() 方法的释义却不是那么容易搞清楚,下面举例进行阐 ...
- redis-布隆过滤器使用
占用空间测试地址 https://krisives.github.io/bloom-calculator/
- React 使用antd 清空表单
handleResetClick = e => { this.props.form.resetFields();};
- vue-cli 3.0版本,配置代理Proxy,不同环境不同target(生产环境,uat环境和本地环境的配置)
1.在项目的的根目录下新建vue.config.js 2.新建一个config包,里面存放不同的环境文件,里面包含:pro.env.js(生产环境配置),uat.env.js(测试环境配置),dev. ...
- Tool ALL Framework
//https://www.cnblogs.com/jiftle/p/10895260.html C++ 资源大全 关于 C++ 框架.库和资源的一些汇总列表,内容包括:标准库.Web应用框架.人工智 ...
- 深入理解Magento-第九章-修改、扩展、重写Magento代码
(博主提示:本章应该不是原作者的第九章,仅作补充和参考) 作为一个开发者的你,肯定要修改Magento代码去适应你的业务需求,但是在很多时候我们不希望修改Magento的核心代码,这里有很多原因,例如 ...
- 基于Flink和规则引擎的实时风控解决方案
案例与解决方案汇总页:阿里云实时计算产品案例&解决方案汇总 对一个互联网产品来说,典型的风控场景包括:注册风控.登陆风控.交易风控.活动风控等,而风控的最佳效果是防患于未然,所以事前事中和事后 ...
- Repeatable Read
在Repeatable Read隔离级别下,一个事务可能会遇到幻读(Phantom Read)的问题. 幻读是指,在一个事务中,第一次查询某条记录,发现没有,但是,当试图更新这条不存在的记录时,竟然能 ...
- FFT快速傅里叶模板
FFT快速傅里叶模板…… /* use way: assign : h(x) = f(x) * g(x) f(x):len1 g(x):len2 1. len = 1; while(len < ...
- Dubbo 如何成为连接异构微服务体系的最佳服务开发框架
从编程开发的角度来说,Apache Dubbo (以下简称 Dubbo)首先是一款 RPC 服务框架,它最大的优势在于提供了面向接口代理的服务编程模型,对开发者屏蔽了底层的远程通信细节.同时 Dubb ...