Balancing Act
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 13865   Accepted: 5880

Description

Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T.
For example, consider the tree:



Deleting node 4 yields two trees whose member nodes are {5} and
{1,2,3,6,7}. The larger of these two trees has five nodes, thus the
balance of node 4 is five. Deleting node 1 yields a forest of three
trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has
two nodes, so the balance of node 1 is two.

For each input tree, calculate the node that has the minimum
balance. If multiple nodes have equal balance, output the one with the
lowest number.

Input

The
first line of input contains a single integer t (1 <= t <= 20),
the number of test cases. The first line of each test case contains an
integer N (1 <= N <= 20,000), the number of congruence. The next
N-1 lines each contains two space-separated node numbers that are the
endpoints of an edge in the tree. No edge will be listed twice, and all
edges will be listed.

Output

For
each test case, print a line containing two integers, the number of the
node with minimum balance and the balance of that node.

Sample Input

1
7
2 6
1 2
1 4
4 5
3 7
3 1

Sample Output

1 2

Source

 
【题解】
此题用所谓“DP”?求重心即可,更新时时刻注意更新最小节点
一直不理解为啥求重心也叫DP啊!
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib> inline void read(int &x)
{
x = ;char ch = getchar();char c = ch;
while(ch > '' || ch < '')c = ch, ch = getchar();
while(ch <= '' && ch >= '')x = x * + ch - '', ch = getchar();
if(c == '-')x = -x;
}
inline int max(int a, int b){return a > b ? a : b;}
inline int min(int a, int b){return a < b ? a : b;} const int INF = 0x3f3f3f3f;
const int MAXN = + ; struct Edge
{
int u,v,next;
}edge[MAXN << ];
int t,n,head[MAXN],cnt,b[MAXN],dp[MAXN],ma,g;
inline void insert(int a, int b){edge[++cnt] = Edge{a,b,head[a]};head[a] = cnt;} void dfs(int u)
{
int pos, tmp = -;
dp[u] = ;
for(pos = head[u];pos;pos = edge[pos].next)
{
int v = edge[pos].v;
if(!b[v])
{
b[v] = true;
dfs(v);
dp[u] += dp[v];
tmp = max(tmp, dp[v]);
}
}
tmp = max(tmp, n - dp[u]);
if(tmp < ma)
ma = tmp,g = u;
if(tmp == ma)
g = min(g, u);
} int main()
{
read(t);
register int i,tmp1,tmp2;
for(;t;--t)
{
ma = INF,g = INF;
memset(edge, , sizeof(edge));
memset(head, , sizeof(head));
cnt = ;memset(dp, , sizeof(dp));
memset(b, , sizeof(b));
read(n);
for(i = ;i < n;++ i)
{
read(tmp1);read(tmp2);
insert(tmp1, tmp2);insert(tmp2, tmp1);
}
b[] = true;
dfs();
printf("%d %d\n", g, ma);
}
return ;
}

POJ1655 Balancing Art的更多相关文章

  1. poj1655 Balancing Act 找树的重心

    http://poj.org/problem? id=1655 Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  2. POJ1655 Balancing Act(树的重心)

    题目链接 Balancing Act 就是求一棵树的重心,然后统计答案. #include <bits/stdc++.h> using namespace std; #define REP ...

  3. poj-1655 Balancing Act(树的重心+树形dp)

    题目链接: Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11845   Accepted: 4 ...

  4. poj1655 Balancing Act (dp? dfs?)

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14247   Accepted: 6026 De ...

  5. POJ-1655 Balancing Act

    题目大意:一棵n个节点的树,找出最大子树最小的节点. 题目分析:过程类似求重心. 代码如下: # include<iostream> # include<cstdio> # i ...

  6. [POJ1655]Balancing Act

    思路:DP求树的重心.对于每个结点$i$,$d_i=\displaystyle{\sum_{j\in s(i)}}d_j+1$.删去这个点能得到的最大子树大小即为$\max(\max\limits_{ ...

  7. poj1655 Balancing Act求树的重心

    Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any nod ...

  8. POJ1655 Balancing Act(树的重心)

    树的重心即树上某结点,删除该结点后形成的森林中包含结点最多的树的结点数最少. 一个DFS就OK了.. #include<cstdio> #include<cstring> #i ...

  9. POJ-1655 Balancing Act(树的重心)

    Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the t ...

随机推荐

  1. 快速I/O 51node 1406

    #include <bits/stdc++.h> using namespace std; #define LL long long typedef pair<int,int> ...

  2. PHP--通用化API接口数据输出 封装

    /** * 通用化API接口数据输出 * author qinpeizhou * @param $message * @param array $data * @param int $httpCode ...

  3. php条件语句(一)

    PHP If...Else 语句 条件语句用于根据不同条件执行不同动作. PHP 条件语句 当您编写代码时,您常常需要为不同的判断执行不同的动作.您可以在代码中使用条件语句来完成此任务. 在 PHP ...

  4. 19-10-15-Night-E

    信心赛??高考赛…… 过程 T1码了暴力+随机化. T2没码完.$Kuku$了 T3写了暴力+ puts("86400\n-1"); 骗了点分. T1 ××你告诉我CF E题是T1 ...

  5. ArcGIS Data Interoperability 的使用(1)

    今天在用OneMap的时候,发现OneMap中注册过后的WFS服务无法在skyline中加载,于是想知道OneMap注册后的WFS服务与server中的原生态WFS服务有啥区别.首先想到是否能在Arc ...

  6. 通过js 存取cookie

    //存cookie function setCookie(name,value){ var Days = 30; var exp = new Date(); exp.setTime(exp.getTi ...

  7. 创业型 APP 如何筛选合适的推送平台

    对于中小型 App 开发团队来说,采用何种方式实现适时而精准的消息推送是一件矛盾的事.将相同内容推送给所有终端用户,担心打扰用户.引起用户反感:而个性化的分群推送,又因为团队人少.运营精力不足无法实现 ...

  8. 视频透雾原理加视频增强Retinex算法介绍

    (本文转自:http://www.syphong.cn/52-1.html#) 视频透雾原理加视频增强Retinex算法介绍 -上海凯视力成 钟建军 一. 视频增强的背景 视觉信息是人类获得外界信息的 ...

  9. 2018-12-15-VisualStudio-通过-EditorBrowsable-隐藏不开放的属性或方法

    title author date CreateTime categories VisualStudio 通过 EditorBrowsable 隐藏不开放的属性或方法 lindexi 2018-12- ...

  10. LA4123 Glenhow Museum

    题目大意:蓝书P115 不愧是WF的题 不难发现R的个数为L/2 + 2,O的个数为L/2 - 2 三种做法,第一种比较麻烦,dp[i][j][k][l]表示i个R,j个O,第一个元素是(k)R,最后 ...