一、背景介绍

Data Lake Analytics(简称DLA)在构建第一天就是支持直接关联分析Table Store(简称OTS)里的数据,实现存储计算分离架构,满足用户基于SQL接口分析Table Store数据需求。

玩转DLA+OTS:https://ots.console.aliyun.com/index#/demo/cn-hangzhou/dla
王烨:DLA如何分析Table Store的数据

​DLA控制台:https://openanalytics.console.aliyun.com/

二、DLA与Table Store的密切配合

这是DLA与Table Store在生态中的关系,作为存储计算分离架构,DLA负责主要的SQL算子计算,而Table Store则负责部分计算(由DLA下推下来)和核心存储功能。

三、Table Store的数据原型

目前,Table Store的宽数据表结构(https://help.aliyun.com/document_detail/89879.html)中的列, 主要分成两部分:主键(所有主键都不可改,也不为空;其中第一主键是物理分区键),非主键列(可改可覆盖可为空,可有可无):

假设有张表tbl(主键:pk1,pk2;非主键:col1,col2),当DLA收到这样的SQL时:

select pk2,col1 from tbl where pk1 = 123 and pk2 >= '2019-01-10' and col2 = 'zzz'

DLA就会基于Table Store的SDK接口下发相关的查询:

1)查询tbl表数据,其中只查询pk2、pk3、col3这几个列;

2)按照pk1做分区裁剪,只下推查询到pk1=123所在的分区;
3)下推 pk1 =123、pk2 >='2019-01-10'和col4 ='zzz' 这三个条件;
4)如果当前分区的数据很大,则会切分出多个分片,并行查询;

这里,最关键的条件就是 pk1 =123,DLA基于这个第一主键(分区键)条件来筛选OTS的目标分区然后下发查询条件。其他支持的分区条件有

比较条件:>,>=,=,<,<=,!=
范围条件:[1,20], (2,10), (-∞,10], (20,+∞)等

四、DLA+Table Store查询时的瓶颈

针对上面的表结构,如果遇到如下的SQL:

select pk2,pk3,col3 from tbl where pk2 >= '2019-01-10' and col4 = 'zzz'

因为pk1并没有出现在条件中,无法做分区裁剪,因此目前DLA会先将整个TableStore的表切好分片,然后下推其他条件,并行获取每个分片的数据并做计算。这样的问题就是:

  • 如果where条件的过滤性很强(满足条件的数据不多),那这种拉取大量数据方式就会引起极大的浪费;即使where条件是可以下推的,但Table Store内部也要消耗大量的CU来做计算和过滤;
  • 虽然通过并行计算来加速,但整体延时还是会很高,无论这些计算是在Table Store内部还是DLA这一侧;尤其是强过滤性的SQL,更加不符合用户需求;

无论是计算成本还是延时,都会影响客户的体验。

而多元索引是基于倒排索引(https://en.wikipedia.org/wiki/Inverted_index)来设计和实现的:

  1. 把一行Table Store记录看成一篇Document,而Pk是这个Document的DocId;
  2. 每个索引字段都当成一个Term,每个Term值都反向形成一个DocId的链表;
  3. 在查询时针对where条件中每个列找到满足值域的Term列表,再对应产生多个DocId列表;
  4. 再通过拉链合并算法,最终得到合并DocId之后的最大公共集合;
  5. 基于这个合并之后的DocId集合(即Pk集合),再回主表查询数据和过滤、返回;

因此,DLA全面升级了,支持直接以SQL方式访问Table Store的多元索引(https://help.aliyun.com/document_detail/91974.html
从而来加速查询。

五*、DLA访问Table Store的多元索引

对DLA的客户来说,只需一步,就可以使用DLA来访问Table Store的多元索引。因为目前统计信息采集及优化器等原因,暂时还不支持自动判断多元索引,所以需要利用DLA的hint来主动开启(DLA的hint机制:https://zhuanlan.zhihu.com/p/55068247):

/*+ ots-index-first=<相关的索引开关> */ select * from tbl1 where ...

其中,索引开关有几种模式:

  • auto模式,会寻找与表相关的索引,只要有满足条件的索引,就会强制使用:
/*+ ots-index-first=auto */ select * from tbl1 where ...

  • custom模式,根据用户选择表列表,来自动选择满足条件的索引;其中tbl1不需要显示指定库名,是因为当前连接上已经绑定了一个库(比如use xxx);如下case中,只有tbl1和tbl2会走索引,而tbl3则不会:
/*+ ots-index-first=[tbl1, dla_schema2.tbl2, ...] */ select * from tbl1
join dla_schema2.tbl2 join dla_schema3.tbl3 where ...

  • threshold模式,会根据当前条件匹配的数据量来动态决策,如果找到一个索引,其匹配的数据量小于一定的行数或者一定比例,那就会自动选择;threshold:200表示where条件匹配的行数不超过200行才会使用,而threshold:5%则表示匹配的比例不超过5%才会使用(至于200和5%,DLA内部会调用Table Store的count接口做快速测试并预估判断):
/*+ ots-index-first=threshold:200 */ select * from tbl1 where ...
/*+ ots-index-first=threshold:5% */ select * from tbl1 where ...

另外,早期客户给DLA做的角色授权策略里并没有这些新增的多元索引接口,因此老客户需要重新给DLA做跨云服务访问的角色授权,戳这里>>>

六、多元索引不是银弹,请合理使用

虽然Table Store多元索引很好用,但他也不是银弹,需要合理的使用。有几个场景的约束:

  • 查询多元索引时,只能构建并下发一个分片,因此无法利用并行计算优势;因此对于匹配行数非常少时,单分片索引计算是有优势的;而过滤性很差、数据量很多时就没有优势;
  • 目前多元索引与主表数据之间不是强一致同步的(正常同步时间在毫秒到秒级),因此业务上需要容忍这个延时;
  • 通过索引找到一批Pk列表后,会再发起随机query来查找主表数据,所以可能会更慢;
  • 索引字段的类型、定义等,可能不符合数据库的使用特性(比如定义了全文索引字段等),暂时也不能被自动使用起来;

当然,针对传统数据库的索引中的一些特性,在DLA中也尽量采纳进来,比如Covering Index(http://literatejava.com/sql/covering-indexes-query-optimization/) 来避免随机查询主表,DLA和Table Store也支持,比如这样的SQL:

-- pk1, pk2是主键,col1,col2是非主键列,索引是idx_col1_col2
select pk1, col1 from tbl where col2 = 21

这里col1和col2都在索引中,而pk1和pk2也间接在索引中,因此这个SQL完全可以在索引上完成过滤和输出,从而避免回主表查询。

七、未来方向考虑

除了多元索引之外,目前Table Store团队也在积极地推广二级索引(https://help.aliyun.com/document_detail/91935.html),帮助用户更好的使用Table Store。未来DLA也会将这块能力集成进来,这样DLA可以帮助用户在主表、二级索引表、多元索引表之间最优化选择,帮助客户提升性能并且降低成本。

未来,DLA需要实现预先采集更多的统计信息,免去用户主动添加hint的麻烦,完全自动化的选择和路由,做到真正的数据库体验。

未来,DLA还需要下推更多的计算到Table Store上,实现更好的”近存储计算“,比如聚合能力下推、函数下推、支持全文索引等等,让用户使用DLA+Table Store获得更好的体验。

八、相关文档

本文作者:Roin

原文链接

本文为云栖社区原创内容,未经允许不得转载。

只需一步,DLA开启TableStore多元索引查询加速!的更多相关文章

  1. 安装go语言,配置环境及IDE,只需3步

    安装go语言,配置环境及IDE,只需3步 ( 欢迎加入go语言群: 218160862 , 群内有实践) 第1.下载 go压缩包,解压   ,如果你是window系统,请选择go1.5.windows ...

  2. PDF怎么旋转页面,只需几步轻松搞定!

    有时候我们下载一个PDF文件里面有页面是旋转的情况,用手机看的时候可以把手机旋转过来看,那么用电脑的时候总不可能也转过来看吧,笔记本是可以的台式的是不行的,这个时候我们就需要把PDF文件中旋转的页面转 ...

  3. 为什么学Python语言,只需四步全面了解Python语言

    为什么学Python语言,只需四步全面了解Python语言每个时代都会悄悄犒赏会选择的人,Python现在风口的语言Python--第三大主流编程语言Python , 是一种面向对象的解释型计算机程序 ...

  4. vuex其实超简单,只需3步

    前言 之前几个项目中,都多多少少碰到一些组件之间需要通信的地方,而因为种种原因,event bus 的成本反而比vuex还高, 所以技术选型上选用了 vuex, 但是不知道为什么,团队里的一些新人一听 ...

  5. 如何把C++的源代码改写成C代码?而C改C++只需一步!

    ★ 如何把C++的源代码改写成C代码? C++解释器比C语言解释器占用的存储空间要大,想要在某些特定场合兼容C++代码,同时为了节省有限的存储空间,降低成本,也为了提高效率,将用C++语言写的源程序用 ...

  6. 一、JavaScript实现AJAX(只需四步)

    -----------------------------------------------一.JavaScript实现AJAX(只需四步)----------------------------- ...

  7. 只需3步,快来用AI预测你爱的球队下一场能赢吗?

    摘要:作为球迷,我们有时候希望自己拥有预测未来的能力. 本文分享自华为云社区<用 AI 预测球赛结果只需三步,看看你爱的球队下一场能赢吗?>,作者:HWCloudAI. 还记得今年夏天的欧 ...

  8. JS数组 团里添加新成员(向数组增加一个新元素)只需使用下一个未用的索引,任何时刻可以不断向数组增加新元素。myarray[5]=88;

    团里添加新成员(向数组增加一个新元素) 上一节中,我们使用myarray变量存储了5个人的成绩,现在多出一个人的成绩,如何存储呢?  只需使用下一个未用的索引,任何时刻可以不断向数组增加新元素. my ...

  9. 【代码更新】单细胞分析实录(21): 非负矩阵分解(NMF)的R代码实现,只需两步,啥图都有

    1. 起因 之前的代码(单细胞分析实录(17): 非负矩阵分解(NMF)代码演示)没有涉及到python语法,只有4个python命令行,就跟Linux下面的ls grep一样的.然鹅,有几个小伙伴不 ...

随机推荐

  1. python3-常用模块之序列化

    序列化 : 把其他的数据类型转换成 字符串或者bytes 序列 : 列表.元组.字符串.bytes 为什么要把其他数据类型转换成字符串? 能够在网络上传输的只能是bytes,能够存储在文件里的只有by ...

  2. python 筛选序列中的元素

    列表生成式 a = [1, 2, 3, 4, -1, -2] b = [i for i in a if a > 0] 如果数据量很大,会产生一个庞大的结果.这时可以用生成器表达式: b = (i ...

  3. Free- Linux必学的60个命令

    1.作用 free命令用来显示内存的使用情况,使用权限是所有用户. 2.格式 free [-b|-k|-m] [-o] [-s delay] [-t] [-V] 3.主要参数 -b -k -m:分别以 ...

  4. ROS urdf和xacro文件详解

    视觉标签:visual <visual> <origin xyz="0.0 0.0 0.0" /> <geometry> <box siz ...

  5. thinkPHP使用中踩的坑,记录一下(不停更)

    版本3.2.3 1.数据库操作中的连贯操作table(),在查询的时候可以切换表,但是在插入,更新的时候请不要使用.例如 D('user')->table('auth')->add($da ...

  6. c语言学习笔记 - 枚举类型

    今天学习了c语言的枚举类型的使用,可能是PHP里没使用过,开始看的时候还是觉得有点怪,后来做了下例子才理解,这里做个笔记记录一下. #include <stdio.h> enum anim ...

  7. 13 个最佳 JavaScript 数据网格库

    13 个最佳 JavaScript 数据网格库   转自:开源中国 www.oschina.net/translate/best-javascript-data-grid-libraries Java ...

  8. PAT甲级——A1041 Be Unique

    Being unique is so important to people on Mars that even their lottery is designed in a unique way. ...

  9. mapreduce join操作

    上次和朋友讨论到mapreduce,join应该发生在map端,理由太想当然到sql里面的执行过程了 wheremap端 join在map之前(笛卡尔积),但实际上网上看了,mapreduce的笛卡尔 ...

  10. springboot使用@Aspect实现AOP记录日志讲解

    AOPAOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术.在日常开发当中经常用来记录日志,方法跟踪 ...