「BZOJ1385」「Baltic2000」Division expression 解题报告
Division expression
Description
除法表达式有如下的形式: \(X_1/X_2/X_3.../X_k\) 其中Xi是正整数且\(X_i \le 1000000000(1 \le i \le k,K \le 10000)\) 除法表达式应当按照从左到右的顺序求,例如表达式1/2/1/2的值为1/4.但可以在表达式中加入括号来改变计算顺序,例如(1/2)/(1/2)的值为1.现给出一个除法表达式E,求是告诉是否可以通过增加括号来使其为E',E'为整数。
Input
先给出一个数字D,代表有D组数据. 每组数据先给出一个数字N,代表这组数据将有N个数。 接下来有N个数
Output
如果能使得表达式的值为一个整数,则输出YES.否则为NO
Sample Input
2
4
1
2
1
2
3
1
2
3
Sample Output
YES
NO
思路
观察这个式子\(E = X_1 / X_2 / X_3 .... / X_n\)
我们设\(E' = X_{a1} * X_{a2}..../ X_{b1} / X_{b2}....\)
即把加括号后的式子改成分数线的形式,有一些元素属于分子,其他的元素属于分母。
我们发现:
- \(X_1\) 不得不在分子 没有为什么 就是不可以
- \(X_2\) 不得不在分母 因为你想让它去分母它也不可能到分母
- \(X_3 \ to \ X_n\) 可在分子也可在分母 总是有办法的QAQ
如果叫你把\(X_3 \ to \ X_n\)分一部分在分子,其他的在分母,你会怎么做?? 当然是把全部元素放在分子呗。。。
因此最优的 \(E' = X_1 * X_3 * X_4....* X_n / X_2\)
如果真的乘起来的话肯定会溢出,所以当然要用GCD。
清爽的30行代码$(~ ̄▽ ̄)~ $
代码
#include<cstdio>
using namespace std;
#define MAXN 10005
int T;
int n, t, s;
int gcd( int x, int y ){
return x % y == 0 ? y : gcd( y, x % y );
}
int main(){
scanf( "%d", &T );
while( T-- ){
scanf( "%d", &n );
scanf( "%d", &t );
if ( n == 1 ){//注意特判
printf( "YES\n" ); continue;
}
scanf( "%d", &s );
s /= gcd( s, t );
for ( int i = 3; i <= n; ++i ){
scanf( "%d", &t );
s /= gcd( s, t );
}
if ( s == 1 ) printf( "YES\n" );
else printf( "NO\n" );
}
return 0;
}
「BZOJ1385」「Baltic2000」Division expression 解题报告的更多相关文章
- 「SHOI2016」黑暗前的幻想乡 解题报告
「SHOI2016」黑暗前的幻想乡 sb题想不出来,应该去思考原因,而不是自暴自弃 一开始总是想着对子树做dp,但是状态压不起去,考虑用容斥消减一些条件变得好统计,结果越想越乱. 期间想过矩阵树定理, ...
- 「ZJOI2015」地震后的幻想乡 解题报告
「ZJOI2015」地震后的幻想乡 想了半天,打开洛谷题解一看,最高票是_rqy的,一堆密密麻麻的积分差点把我吓跑. 据说有三种解法,然而我只学会了一种最辣鸡的凡人解法. 题意:给一个无向图\(G\) ...
- 「SCOI2014」方伯伯的玉米田 解题报告
#2211. 「SCOI2014」方伯伯的玉米田 发现是取一个最长不下降子序列 我们一定可以把一个区间加的右端点放在取出的子序列的最右边,然后就可以dp了 \(dp_{i,j}\)代表前\(i\)个玉 ...
- 「洛谷P1306」斐波那契公约数 解题报告
P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很"简单"问题:第n项和第m项的最大公 ...
- 「洛谷P2397」 yyy loves Maths VI (mode) 解题报告
P2397 yyy loves Maths VI (mode) 题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居 ...
- 「USACO11NOV」牛的障碍Cow Steeplechase 解题报告
题面 横的,竖的线短段,求最多能取几条没有相交的线段? 思路 学过网络流的童鞋在哪里? 是时候重整网络流雄风了! 好吧,废话不多说 这是一道最小割的题目 怎么想呢? 要取最多,那反过来不就是不能取的要 ...
- 「Luogu P2508」[HAOI2008]圆上的整点 解题报告
题面 给定圆的半径,求圆上整点数 这是一道很Nice的数学题!超爱!好吧,由于这道题,我去Study了一下复数(complex number)复杂的数 真棒!!! 有兴趣的戳这里!!!\(\huge ...
- 【BZOJ】【1385】【Baltic2000】Division expression
欧几里得算法 普通的求个gcd即可……思路题 因为要求尽量是整数……所以 $\frac{x_1}{x_2*x_3*x_4*....*x_n}$是最大的结果了,因为$x_2$必须为分母,$x_1$必须为 ...
- 「kuangbin带你飞」专题十四 数论基础
layout: post title: 「kuangbin带你飞」专题十四 数论基础 author: "luowentaoaa" catalog: true tags: mathj ...
随机推荐
- 【小程序案例】支付宝小程序-MQTT模器,IoT设备通过WSS接入阿里云IoT物联网平台
支付宝小程序-MQTT模拟器通过WSS接入阿里云IoT物联网平台 小程序效果: 1. 准备工作 1.1 注册阿里云账号 开通阿里云账号,并通过支付宝实名认证 https://www.aliyun.co ...
- hdu 1839 Delay Constrained Maximum Capacity Path(spfa+二分)
Delay Constrained Maximum Capacity Path Time Limit: 10000/10000 MS (Java/Others) Memory Limit: 65 ...
- Core Data 数据出现Fault
I am mapping Json Data from Server using Restkit and I am Displaying those data by fetching from db. ...
- pytorch中查看gpu信息
其他:windows使用nvidia-smi查看gpu信息 为什么将数据转移至GPU的方法叫做.cuda而不是.gpu,就像将数据转移至CPU调用的方法是.cpu?这是因为GPU的编程接口采用CUDA ...
- Laravel 上传excel,读取并写入数据库 (实现自动建表、存记录值
<?php namespace App\Http\Controllers; use Illuminate\Foundation\Bus\DispatchesJobs; use Illuminat ...
- TortoiseSVN各种状态
黄色感叹号(有冲突): --这是有冲突了,冲突就是说你对某个文件进行了修改,别人也对这个文件进行了修改,别人抢在你提交之前先提交了,这时你再提交就会被提示发生冲突,而不允许你提交,防止你的提交覆盖了别 ...
- [转]Netty实现原理浅析
Netty是JBoss出品的高效的Java NIO开发框架,关于其使用,可参考我的另一篇文章netty使用初步.本文将主要分析Netty实现方面的东西,由于精力有限,本人并没有对其源码做了极细致的研 ...
- 洛谷P1981 表达式求值 题解 栈/中缀转后缀
题目链接:https://www.luogu.org/problem/P1981 这道题目就是一道简化的中缀转后缀,因为这里比较简单,只有加号(+)和乘号(*),所以我们只需要开一个存放数值的栈就可以 ...
- 安装ssh-batch工具
关于sshbatch sshbatch是用perl写了非常方便操作管理集群的一个工具,项目的源码在GitHub托管. 关于sshbatch以及其详细的使用方法,春哥在GitHub上介绍的非常详细了,详 ...
- Python工程编译成跨平台可执行文件(.pyc)
原文:https://blog.csdn.net/zylove2010/article/details/79593655 在某些场景下,若不方便将python编写的源码工程直接给到其他人员,则可以将p ...