洛谷$P4045\ [JSOI2009]$密码 $dp$+$AC$自动机
正解:$dp$+$AC$自动机+搜索
解题报告:
首先显然先建个$AC$自动机,然后考虑设$f_{i,j,k}$表示长度为$i$,现在在$AC$自动机的第$j$个位置,已经表示出来的串的状态为$k$的方案数,直接转移就好.
然后考虑输出方案.首先一定不存在可以随便填的位置.
挺显然的随便说下昂,首先如果有一个可以随便填的位置,就有26种可能.然后可以给这个位置和字符串交换位置,就至少有2种可能,这时候就已经至少有$2\times 26=52$了,所以一定不存在可以随便填的位置.
所以直接$O(!n)$爆搜$QwQ$,$over$
因为爆搜真的很麻烦,所以我直接开了个$vector$在$dp$转移的时候顺便记了下方案.
但是挺容易$MLE$的,所以我把第一维滚了下.
然后还有一个注意点是每次转移完之后没用的$vector$清空下不然真的$MLE$到飞起$kk$
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define gc getchar()
#define ll long long
#define ri register int
#define rb register bool
#define rc register char
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define my(i,x,y) for(ri i=x;i>=y;--i) const int N=100+10,M=(1<<10)+10;
int len,n,nod_cnt,tot,nw=1,pre;
ll f[2][N][M],ans;
bool vis[N];
char s[N];
vector<string>as[2][N][M],an;
struct node{int to[27],zt,fail;}nod[N]; il int read()
{
rc ch=gc;ri x=0;rb y=1;
while(ch!='-' && (ch>'9' || ch<'0'))ch=gc;
if(ch=='-')ch=gc,y=0;
while(ch>='0' && ch<='9')x=(x<<1)+(x<<3)+(ch^'0'),ch=gc;
return y?x:-x;
}
il void insert(ri num)
{
scanf("%s",s+1);ri l=strlen(s+1),nw=0;
rp(i,1,l)
{
if(!nod[nw].to[s[i]-'a'])nod[nw].to[s[i]-'a']=++nod_cnt;
nw=nod[nw].to[s[i]-'a'];
}
nod[nw].zt=1<<num;
}
il void build()
{
queue<int>Q;
rp(i,0,25)if(nod[0].to[i])Q.push(nod[0].to[i]);
while(!Q.empty())
{
ri nw=Q.front();Q.pop();
rp(i,0,25)
if(nod[nw].to[i])Q.push(nod[nw].to[i]),nod[nod[nw].to[i]].fail=nod[nod[nw].fail].to[i];
else nod[nw].to[i]=nod[nod[nw].fail].to[i];
nod[nw].zt|=nod[nod[nw].fail].zt;
}
} signed main()
{
//freopen("4045.in","r",stdin);freopen("4045.out","w",stdout);
len=read();n=read();rp(i,1,n)insert(i-1);build();tot=(1<<n)-1;
f[0][0][0]=1;as[0][0][0].push_back("");
rp(i,1,len)
{
rp(j,0,nod_cnt)
{
rp(k,0,tot)
{
if(f[pre][j][k])
{
rp(t,0,25)
{
ri nwzt=k|nod[nod[j].to[t]].zt;
f[nw][nod[j].to[t]][nwzt]+=f[pre][j][k];
if(f[nw][nod[j].to[t]][nwzt]<=42)
{
ri sz=as[pre][j][k].size();
rp(tt,0,sz-1)as[nw][nod[j].to[t]][nwzt].push_back(as[pre][j][k][tt]+(char)(t+'a'));
}
}
}
f[pre][j][k]=0;if(!as[pre][j][k].empty())as[pre][j][k].clear();
}
}
nw^=1;pre^=1;
}
nw^=1;
rp(i,0,nod_cnt)
{
ans+=f[nw][i][(1<<n)-1];
if(ans<=42){ri sz=as[nw][i][(1<<n)-1].size();rp(j,0,sz-1)an.push_back(as[nw][i][(1<<n)-1][j]);}
}
printf("%lld\n",ans);if(ans>42)return 0;
sort(an.begin(),an.end());rp(i,0,ans-1)cout<<an[i]<<endl;
return 0;
}
随机推荐
- @loj - 2090@ 「ZJOI2016」旅行者
目录 @description@ @solution@ @accepted code@ @details@ @description@ 小 Y 来到了一个新的城市旅行.她发现了这个城市的布局是网格状的 ...
- Knative 核心概念介绍:Build、Serving 和 Eventing 三大核心组件
Knative 主要由 Build.Serving 和 Eventing 三大核心组件构成.Knative 正是依靠这三个核心组件,驱动着 Knative 这艘 Serverless 巨轮前行.下面让 ...
- hdu 3068 最长回文 (Manacher算法求最长回文串)
参考博客:Manacher算法--O(n)回文子串算法 - xuanflyer - 博客频道 - CSDN.NET 从队友那里听来的一个算法,O(N)求得每个中心延伸的回文长度.这个算法好像比较偏门, ...
- Python--day20--序列化模块
序列化:转向一个字符串数据类型 序列 ———— 字符串 序列化和反序列化的概念: 序列化三种方法:json pickle shelve json模块:json模块提供了四个方法dumps和load ...
- Python--day21--包
包: 包是一种通过使用‘.模块名’来组织python模块名称空间的方式. 1. 无论是import形式还是from...import形式,凡是在导入语句中(而不是在使用时)遇到带点的,都要第一时间提高 ...
- .NET 创建 WebService
服务器端代码 using System; using System.Collections.Generic; using System.Linq; using System.Web; using Sy ...
- H3C PPP的特点
- 高并发WEB服务的演变
一.越来越多的并发连接数 现在的Web系统面对的并发连接数在近几年呈现指数增长,高并发成为了一种常态,给Web系统带来不小的挑战.以最简单粗暴的方式解决,就是增加 Web系统的机器和升级硬件配置.虽然 ...
- 读《Effect Java中文版》
读<Effect Java中文版> 译者序 序 前言 第1章引言 1 第2章创建和销毁对象 4 第1条:考虑用静态工厂方法代替构造函数 4 第2条:使用私有构造函数强化singleto ...
- Linux 内核 /sys/class类
我们在本章中要考察最后的设备模型概念是类.一个类是一个设备的高级视图, 它抽象出 低级的实现细节. 驱动可以见到一个 SCSI 磁盘或者一个 ATA 磁盘, 在类的级别, 它们都 是磁盘. 类允许用户 ...