线段树分治

其实思想说起来是比较简单的,我们把这个题里的所有操作(比如连边删边查询balabala)全部拍到一棵线段树上,然后对着整棵树dfs一下求解答案,顺便把操作做一下,回溯的时候撤销一下即可。虽然有的操作需要以区间形式拍到树上,导致它可能会被拆成两个,但线段树的形态同样保证了操作最多只会被拆分\(log(区间长度)\)次,保障了复杂度。

洛谷P5227[AHOI2013]连通图

传送门

其实就是线段树分治+带撤销并查集,并查集写按秩合并,不能路径压缩(否则会破坏结构,就会撤销出奇怪的效果)

以询问的时间轴为下标建一棵线段树,然后把边存在的时间区间拍到线段树上,用\(vector\)存下来,再对着树一波\(dfs\)记录答案,注意在叶节点不能写\(return\)我沙茶了,不然叶节点如果有操作就会还没撤销就返回了。

md没有板对着敲自己yy着写好难受,码了一天

/*P5227 [AHOI2013]连通图*/
#include <bits/stdc++.h>
#define N (100000 + 5)
using namespace std;
inline int read() {
int cnt = 0, f = 1; char c = getchar();
while (!isdigit(c)) {if (c == '-') f = -f; c = getchar();}
while (isdigit(c)) {cnt = (cnt << 3) + (cnt << 1) + c - '0'; c = getchar();}
return cnt * f;
}
int n, m, k, c, x, top;
int fa[N];
struct node {
int u, v;
}edge[N << 1];
struct node2 {
int siz, dep, fa;
node2(int siz_ = 1, int dep_ = 1, int fa_ = 0) : siz(siz_), dep(dep_), fa(fa_){};
}bcj[N << 1], ctrl_Z[N << 1];
int cur[N << 1], top2;
int pre[N << 1];
int get_father(int x) {return x == bcj[x].fa ? x : get_father(bcj[x].fa);}
void merge(int p, int q) {
int x = get_father(p), y = get_father(q);
if (x == y) return;
if (bcj[x].dep > bcj[y].dep) swap(x, y);
ctrl_Z[++top] = bcj[x];
ctrl_Z[++top] = bcj[y];
bcj[x].fa = y, bcj[y].dep = max(bcj[y].dep, bcj[x].dep + 1), bcj[y].siz += bcj[x].siz;
cur[++top2] = x;
cur[++top2] = y;
}
struct node3{
int l, r;
vector<node> E;
#define l(p) tree[p].l
#define r(p) tree[p].r
}tree[N << 2]; void build(int l, int r, int p) {
l(p) = l, r(p) = r;
if (l == r) return;
int mid = (l + r) >> 1;
build (l, mid, p << 1);
build (mid + 1, r, p << 1 | 1);
} void insert(node x, int l, int r, int p) {
if (l <= l(p) && r >= r(p)) { tree[p].E.push_back(x); return; }
register int mid = (l(p) + r(p)) >> 1;
if (l <= mid) insert(x, l, r, p << 1);
if (r > mid) insert(x, l, r, p << 1 | 1);
}
void dfs_(int p) {
int tp = top2;
for (register unsigned int i = 0; i < tree[p].E.size(); i++) {
node now = tree[p].E[i];
merge(now.u, now.v);
}
if (l(p) == r(p)) {
int now = bcj[get_father(1)].siz;
printf(now == n ? "Connected\n" : "Disconnected\n");
} else dfs_(p << 1), dfs_(p << 1 | 1);
for (; top2 > tp; --top2, --top) {bcj[cur[top2]] = ctrl_Z[top];}
} int main() {
n = read(), m = read();
for (register int i = 1; i <= n; i++) bcj[i] = node2(1, 1, i);
for (register int i = 1; i <= m; i++)
edge[i].u = read(), edge[i].v = read(), pre[i] = 1;
k = read();
build (1, k, 1);
for (register int i = 1; i <= k; i++) {
c = read();
for (register int j = 1; j <= c; j++) {
x = read();
if (pre[x] < i) insert(edge[x], pre[x], i - 1, 1);
pre[x] = i + 1;
}
}
for (register int i = 1; i <= m; i++) {
if (pre[i] <= k) insert(edge[i], pre[i], k, 1);
}
dfs_(1);
return 0;
}

线段树分治初步学习&洛谷P5227[AHOI2013]连通图的更多相关文章

  1. 李超线段树(segment[HEOI2013]-洛谷T4097)

    (neng了好久好久才糊弄懂得知识点...) 一.李超线段树 在线动态维护一个二维平面直角坐标系, 支持插入一条线段, 询问与直线x = x0相交的所有线段中,交点y的最大/小值 (若有多条线段符合条 ...

  2. 线段树板子1(洛谷P3372)

    传送 一道线段树板子(最简单的) 似乎之前在培训里写过线段树的样子?不记得了 何为线段树? 一般就是长成这样的树,树上的每个节点代表一个区间.线段树一般用于区间修改,区间查询的问题. 我们如何种写一棵 ...

  3. 洛谷.3733.[HAOI2017]八纵八横(线性基 线段树分治 bitset)

    LOJ 洛谷 最基本的思路同BZOJ2115 Xor,将图中所有环的异或和插入线性基,求一下线性基中数的异或最大值. 用bitset优化一下,暴力的复杂度是\(O(\frac{qmL^2}{w})\) ...

  4. Bzoj1018/洛谷P4246 [SHOI2008]堵塞的交通(线段树分治+并查集)

    题面 Bzoj 洛谷 题解 考虑用并查集维护图的连通性,接着用线段树分治对每个修改进行分治. 具体来说,就是用一个时间轴表示图的状态,用线段树维护,对于一条边,我们判断如果他的存在时间正好在这个区间内 ...

  5. 【洛谷4219】[BJOI2014]大融合(线段树分治)

    题目: 洛谷4219 分析: 很明显,查询的是删掉某条边后两端点所在连通块大小的乘积. 有加边和删边,想到LCT.但是我不会用LCT查连通块大小啊.果断弃了 有加边和删边,还跟连通性有关,于是开始yy ...

  6. LOJ 2312(洛谷 3733) 「HAOI2017」八纵八横——线段树分治+线性基+bitset

    题目:https://loj.ac/problem/2312 https://www.luogu.org/problemnew/show/P3733 原本以为要线段树分治+LCT,查了查发现环上的值直 ...

  7. 洛谷 P2147 [SDOI2008]洞穴勘测 (线段树分治)

    题目链接 题解 早就想写线段树分治的题了. 对于每条边,它存在于一段时间 我们按时间来搞 我们可把一条边看做一条线段 我们可以模拟线段树操作,不断分治下去 把覆盖\(l-r\)这段时间的线段筛选出来, ...

  8. 【洛谷4585】[FJOI2015] 火星商店问题(线段树分治)

    点此看题面 大致题意: 有\(n\)家店,每个商品有一个标价.每天,都可能有某家商店进货,也可能有某人去购物.一个人在购物时,会于编号在区间\([L_i,R_i]\)的商店里挑选一件进货\(d_i\) ...

  9. 【洛谷P4319】 变化的道路 线段树分治+LCT

    最近学了一下线段树分治,感觉还蛮好用... 如果正常动态维护最大生成树的话用 LCT 就行,但是这里还有时间这一维的限制. 所以,我们就把每条边放到以时间为轴的线段树的节点上,然后写一个可撤销 LCT ...

随机推荐

  1. JAVA利用JXL导出 EXCEL (在原有的excel模板上把数据导到excel上)

    添加依赖 <dependency> <groupId>net.sourceforge.jexcelapi</groupId> <artifactId>j ...

  2. 大道浮屠诀---mysql5.7.28 for linux安装

    环境: redhat6.5 MySQL Community Server 5.7.28 https://dev.mysql.com/downloads/mysql/5.7.html 安装RMP包的具体 ...

  3. python中的OrderedDict

    该类型存放顺序和添加顺序一致,比如逐个赋值,但和dict直接转化过去的顺序不一定一样. d1 = collections.OrderedDict() d1['b'] = 'B'd1['a'] = 'A ...

  4. linux 将子文件夹的文件复制到 当前目录中

    linux 将子文件夹的文件复制到 当前目录中,如 目录结构大概是 -sh |__ db_backup |___ test |____ 2018_01_01_00_00_00 |_____ 2018_ ...

  5. 【JZOJ6378】小w与数字游戏(game)

    description analysis 对于\(n\)很大,一眼看出来肯定有两个相等的数减出来是\(0\),答案肯定是\(0\) 其实只要\(n>7\),由于斐波那契数列,肯定能有几个数的和减 ...

  6. 【JZOJ4905】【BZOJ4720】【luoguP1850】换教室

    description 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节课程安排在n个时间段上.在第i(1≤i≤n)个时间段上,两节内容相同的课 ...

  7. Pipe进程之间的通信

    #_author:来童星#date:2019/12/11#Pipefrom multiprocessing import Process, Pipedef f(conn): conn.send([42 ...

  8. thinkphp ajax返回

    ThinkPHP可以很好的支持AJAX请求,系统的\Think\Controller类提供了ajaxReturn方法用于AJAX调用后返回数据给客户端.并且支持JSON.JSONP.XML和EVAL四 ...

  9. duilib教程之duilib入门简明教程10.界面设计器 DuiDesigner

    上一个教程讲解了怎么布局最大化.最小化.关闭按钮,但是如果手动去计算这三个按钮的位置和大小的话,非常的不直观,也很不方便.    所以这一章准备介绍duilib的UI设计器,由于这个设计器很不完善,也 ...

  10. mysql索引原理深度解析

    mysql索引原理深度解析 一.总结 一句话总结: mysql索引是b+树,因为b+树在范围查找.节点查找等方面优化 hash索引,完全平衡二叉树,b树等 1.数据库中最常见的慢查询优化方式是什么? ...