ftiasch 有 N 个物品, 体积分别是 W1, W2, …, WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N – 1 物品装满容积为 x 的背包,有几种方法呢?” — 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

Input

第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。

第2行: N 个整数 W1, W2, …, WN, 物品的体积。

Output

一个 N × M 的矩阵, Count(i, x)的末位数字。

Sample Input

3 2

1 1 2

Sample Output

11

11

21

HINT

如果物品3丢失的话,只有一种方法装满容量是2的背包,即选择物品1和物品2。

题解

如果每次都去掉一个并跑背包,时间复杂度为O(mn^2),会T。
#include<bits/stdc++.h>

using namespace std;
const int MAXN = 2005; int n,m,dp[MAXN];
int a[MAXN]; int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++){
memset(dp,0,sizeof(dp));
dp[0]=1;
for(register int j=1;j<=n;j++){
if(i==j) continue;
for(register int k=m;k>=a[j];k--){
dp[k]+=dp[k-a[j]];
dp[k]%=10;
}
}
for(register int j=1;j<=m;j++)
printf("%d",dp[j]%10);
printf("\n");
}
return 0;
}
下面我们说正解,其实也不是那么难想
对于每个i只要`
for(register int j=a[i];j<=m;j++){
g[j]-=g[j-a[i]];
g[j]=(g[j]+10)%10;
}`
#include<bits/stdc++.h>

using namespace std;
const int MAXN = 2005; int n,m,dp[MAXN],g[MAXN];
int a[MAXN],cnt[MAXN][MAXN];
bool vis[MAXN]; int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
dp[0]=1;
for(int i=1;i<=n;i++)
for(register int k=m;k>=a[i];k--){
dp[k]+=dp[k-a[i]];
dp[k]%=10;
}
for(int i=1;i<=n;i++){
memcpy(g,dp,sizeof(g));
for(register int j=a[i];j<=m;j++){
g[j]-=g[j-a[i]];
g[j]=(g[j]+10)%10;
}
for(register int j=1;j<=m;j++)
printf("%d",g[j]%10);
printf("\n");
}
return 0;
}

BZOJ 2281 消失之物的更多相关文章

  1. BZOJ 2287: 【POJ Challenge】消失之物( 背包dp )

    虽然A掉了但是时间感人啊.... f( x, k ) 表示使用前 x 种填满容量为 k 的背包的方案数, g( x , k ) 表示使用后 x 种填满容量为 k 的背包的方案数. 丢了第 i 个, 要 ...

  2. BZOJ 2287 【POJ Challenge】消失之物(DP+容斥)

    2287: [POJ Challenge]消失之物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 986  Solved: 572[Submit][S ...

  3. [BZOJ 2287/POJ openjudge1009/Luogu P4141] 消失之物

    题面: 传送门:http://poj.openjudge.cn/practice/1009/ Solution DP+DP 首先,我们可以很轻松地求出所有物品都要的情况下的选择方案数,一个简单的满背包 ...

  4. bzoj2287【POJ Challenge】消失之物 缺一01背包

    bzoj2287[POJ Challenge]消失之物 缺一01背包 链接 bzoj 思路 分治solve(l,r,arr)表示缺少物品\([l,r]\)的dp数组arr. 然后solve(l,mid ...

  5. BZOJ2287: 【POJ Challenge】消失之物

    2287: [POJ Challenge]消失之物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 254  Solved: 140[Submit][S ...

  6. 【BZOJ2287】【POJ Challenge】消失之物 背包动规

    [BZOJ2287][POJ Challenge]消失之物 Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了 ...

  7. 【BZOJ2287】消失之物 [分治][DP]

    消失之物 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description ftiasch 有 N 个物品, ...

  8. 背包DP【bzoj2287】: 【POJ Challenge】消失之物

    2287: [POJ Challenge]消失之物 Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. &q ...

  9. [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理

    消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...

随机推荐

  1. Rabbit MQ 客户端 API 进阶

    之前说了一些基础的概念及使用方法,比如创建交换器.队列和绑定关系等.现在我们再来补充一下细节性的东西. 备份交换器 通过声明交换器的时候添加 alternate-exchange 参数来实现. Con ...

  2. 基于airtest的朋友圈自动点赞

    本脚本可以通过AirtestIDE和python执行,推荐使用AirtestIDE的环境执行,更稳定一些 AirtestIDE官方文档 使用python执行该脚本 安装库 airtest.pocoui ...

  3. VBA中msgbox的用法小结

    1.作用在消息框中显示信息,并等待用户单击按钮,可返回单击的按钮值(比如“确定”或者“取消”).通常用作显示变量值的一种方式.2.语法MsgBox(Prompt[,Buttons][,Title][, ...

  4. 【数论分块】[BZOJ2956、LuoguP2260] 模积和

    十年OI一场空,忘记取模见祖宗 题目: 求$$\sum_{i=1}^{n}\sum_{j=1}^{m} (n \bmod i)(m \bmod i)$$ (其中i,j不相等) 暴力拆式子: $$ANS ...

  5. not registered via @EnableConfigurationProperties or marked as Spring component

    利用@ConfigurationProperties(prefix = "")来绑定属性时报错: not registered via @EnableConfigurationPr ...

  6. Qt Creator编译时提示找不到“ui_xxx.h”文件

    解决方案: 在对应工程的*.pro文件里加上: QT+= widgets 则在编译过程中对应的“xxx.ui”文件会自动生成“ui_xxx.h”文件.

  7. SpringCloudConfig

    方便服务配置文件统一管理,实时更新 组成 在spring cloud config组件中,分两个角色,一是config server,二是config client Config Server是一个可 ...

  8. day30 python类的继承,抽象类等

    Python之路,Day17 = Python基础17-面向对象入门 继承 class Student(People): pass print(Student.__bases__) # 查看 Stud ...

  9. thinkphp 伪静态

    URL伪静态通常是为了满足更好的SEO效果,ThinkPHP支持伪静态URL设置,可以通过设置URL_HTML_SUFFIX参数随意在URL的最后增加你想要的静态后缀,而不会影响当前操作的正常执行.例 ...

  10. 线段树+欧拉函数——cf1114F

    调了半天,写线段树老是写炸 /* 两个操作 1.区间乘法 2.区间乘积询问欧拉函数 欧拉函数计算公式 phi(mul(ai))=mul(ai) * (p1-1)/p1 * (p2-1)/p2 * .. ...