版权声明:本文为博主原创文章,未经博主同意不得转载。

https://blog.csdn.net/xingyeyongheng/article/details/25205693

LOOPS

Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)
Total Submission(s): 1651    Accepted Submission(s): 653

Problem Description
Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl).

Homura wants to help her friend Madoka save the world. But because of the plot of the Boss Incubator, she is trapped in a labyrinth called LOOPS.


The planform of the LOOPS is a rectangle of R*C grids. There is a portal in each grid except the exit grid. It costs Homura 2 magic power to use a portal once. The portal in a grid G(r, c) will send Homura to the grid below G (grid(r+1, c)), the grid on the
right of G (grid(r, c+1)), or even G itself at respective probability (How evil the Boss Incubator is)!
At the beginning Homura is in the top left corner of the LOOPS ((1, 1)), and the exit of the labyrinth is in the bottom right corner ((R, C)). Given the probability of transmissions of each portal, your task is help poor Homura calculate the EXPECT magic power
she need to escape from the LOOPS.

 

Input
The first line contains two integers R and C (2 <= R, C <= 1000).

The following R lines, each contains C*3 real numbers, at 2 decimal places. Every three numbers make a group. The first, second and third number of the cth group of line r represent the probability of transportation to grid (r, c), grid (r, c+1), grid (r+1,
c) of the portal in grid (r, c) respectively. Two groups of numbers are separated by 4 spaces.

It is ensured that the sum of three numbers in each group is 1, and the second numbers of the rightmost groups are 0 (as there are no grids on the right of them) while the third numbers of the downmost groups are 0 (as there are no grids below them).

You may ignore the last three numbers of the input data. They are printed just for looking neat.

The answer is ensured no greater than 1000000.

Terminal at EOF

 

Output
A real number at 3 decimal places (round to), representing the expect magic power Homura need to escape from the LOOPS.

 

Sample Input

2 2
0.00 0.50 0.50 0.50 0.00 0.50
0.50 0.50 0.00 1.00 0.00 0.00
 

Sample Output

6.000
/*题意:有一个迷宫r行m列,開始点在[1,1]如今要走到[r,c]
对于在点[x,y]能够打开一扇门走到[x+1,y]或者[x,y+1]
消耗2点魔力
问平均消耗多少魔力能走到[r,c] 分析:如果dp[i][j]表示在点[i,j]到达[r,c]所须要消耗的平均魔力(期望)
则从dp[i][j]能够到达:
dp[i][j],dp[i+1,j],dp[i][j+1];
相应概率分别为:
p1,p2,p3
由E(aA+bB+cC...)=aEA+bEB+cEC+...//包括状态A,B,C的期望能够分解子期望求解
得到dp[i][j]=p1*dp[i][j]+p2*dp[i+1][j]+p3*dp[i][j+1]+2;
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std; const int MAX=1000+10;
int n,m;
double dp[MAX][MAX],p[MAX][MAX][3]; int main(){
while(~scanf("%d%d",&n,&m)){
for(int i=1;i<=n;++i){
for(int j=1;j<=m;++j)scanf("%lf%lf%lf",&p[i][j][0],&p[i][j][1],&p[i][j][2]);
}
memset(dp,0,sizeof dp);
for(int i=n;i>=1;--i){
for(int j=m;j>=1;--j){
if(i == n && j == m)continue;
if(p[i][j][0] == 1.00)continue;//该点无路可走,期望值肯定为0(dp[i][j]=0)
dp[i][j]=(p[i][j][1]*(dp[i][j+1])+p[i][j][2]*(dp[i+1][j])+2)/(1-p[i][j][0]);
}
}
printf("%.3lf\n",dp[1][1]);
}
return 0;
}

hdu3853之概率dp入门的更多相关文章

  1. HDU 3853 LOOPS 概率DP入门

    LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Total Sub ...

  2. hdu3853 LOOPS(概率dp) 2016-05-26 17:37 89人阅读 评论(0) 收藏

    LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others) Total Su ...

  3. 概率DP入门学习QAQ

    emmmm博客很多都烂尾了...但是没空写..先写一下正在学的东西好了 概率DP这东西每次考到都不会..听题解也是一脸懵逼..所以决定学习一下这个东东..毕竟NOIP考过...比什么平衡树实在多了QA ...

  4. 概率dp入门

    概率DP主要用于求解期望.概率等题目. 转移方程有时候比较灵活. 一般求概率是正推,求期望是逆推.通过题目可以体会到这点. poj2096:Collecting Bugs #include <i ...

  5. HDU 4405:Aeroplane chess(概率DP入门)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=4405 Aeroplane chess Problem Description   Hzz loves ...

  6. poj 2096 Collecting Bugs 概率dp 入门经典 难度:1

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 2745   Accepted: 1345 ...

  7. [hdu3853]LOOPS(概率dp)

    题意:迷宫是一个R*C的布局,每个格子中给出停留在原地,往右走一个,往下走一格的概率,起点在(1,1),终点在(R,C),每走一格消耗两点能量,求出最后所需要的能量期望. 解题关键:概率dp反向求期望 ...

  8. 洛谷P2719 搞笑世界杯 题解 概率DP入门

    作者:zifeiy 标签:概率DP 题目链接:https://www.luogu.org/problem/P2719 我们设 f[n][m] 用于表示还剩下n张A类票m张B类票时最后两张票相同的概率, ...

  9. POJ 2096-Collecting Bugs(概率dp入门)

    题意: 有n种bug和s种系统bug,每天发现一种bug(可能已经发现过了)所有种bug被发现的概率相同,求所有bug被发现的期望天数. 分析: dp[i][j]发现i种bug,j种系统bug期望天数 ...

随机推荐

  1. [PKUSC2018]神仙的游戏

    题目 画一画就会发现一些奇诡的性质 首先如果\(len\)为一个\(\operatorname{border}\),那么必然对于\(\forall i\in [1,len]\),都会有\(s_i=s_ ...

  2. Amazon AWS

  3. 动软DbHelperSQL

    using System; using System.Collections; using System.Data; using System.Data.SqlClient; using System ...

  4. zabbix 自动发现端口服务监控教程

    目录 创建数据表(收集haproxy服务的信息) 针对生成的数据表做监控 在haproxy服务机器上配置 在zabbix上添加监控 前言: 1.线上业务使用了几十上百台haproxy服务,需要针对这些 ...

  5. 容斥原理——hdu1796

    /* 遇到这种题一般用dfs,枚举起点来做 但是本题如何进行容斥? 比如以x为起点,第一步dfs到y,那么因子有lcm(x,y)的 所有数要被减掉(容斥中偶数是减法) 然后第二步dfs到z,那么因子有 ...

  6. bzoj1913: [Apio2010]signaling 信号覆盖

    传送门 题解传送门 //Achen #include<algorithm> #include<iostream> #include<cstring> #includ ...

  7. 北京服务业占GDP比重达81.7%

    北京服务业占GDP比重达81.7% 2017-05-17 19:46:00 来源: 中国新闻网(北京)举报   0 易信 微信 QQ空间 微博 更多 (原标题:北京服务业占GDP比重达81.7%)   ...

  8. 2016年深圳市服务业占GDP比重首次突破六成

    2016年深圳市服务业占GDP比重首次突破六成 中商产业研究院 中商情报网 2017-01-12 11:08 分享:     中商情报网讯 1月10日,深圳市财政委员会召开新闻发布会,就深圳市2016 ...

  9. iOS开发本地推送

    1.简介 本地通知是由本地应用触发的,它是基于时间行为的一种通知形式,例如闹钟定时.待办事项提醒,又或者一个应用在一段时候后不使用通常会提示用户使用此应用等都是本地通知. 2.创建UILocalNot ...

  10. 网页多媒体 flash

    网页上的视频一般都是Flash格式的,因为Flash的兼容性比较好,再一个Flash文件的压缩以后文件较小. 提示:Flash动画的文件扩展名:.swf 以Flash动画为例,播放Flash动画的代码 ...