@description@

有n个城市,每个城市有个权值wi,任意两个城市i,j之间的道路数有wi∗wj条。

对于每种生成树,设每个点的度数为di,其权值定义为∏di。

问所有无根生成树的权值和。答案对1e9+7取模。

Class:

ConnectedStates

Method:

getSum

Parameters:

int[]

Returns:

int

Constraints

n <= 2000

Examples

0)

{"3, 10"}

Returns: 30

1)

{"2, 2, 2"}

Returns: 96

2)

{"1, 1, 1, 1"}

Returns: 60

@solution@

考虑如果固定了生成树的形态,对应的方案应该是所有树边条数的乘积。

稍微变一变其实就是 \(\prod_{i=1}^{n}w_{i}^{d_i}\),这样就只跟点的度数有关了。

根据我们的 prufer 定理,最终答案为:

\[ans = (n-2)!*\sum_{(\sum_{i=1}^{n}d_i) = 2*n-2}(\prod_{i=1}^{n}\frac{w_{i}^{d_i}}{(d_i-1)!}*d_i)
\]

如果将 i 有关的项整理到一起然后 fft 一下的时间复杂度是 O(n^2*logn),但是我们可以做到更优。

优化的思路来源在于多项式的幂公式,即:

\[(a_1 + a_2 + ... + a_n)^k = k!*\sum_{(\sum_{i=1}^{n}b_i) = k}(\prod_{i=1}^{n}\frac{a_{i}^{b_i}}{{b_i}!})
\]

注意到下面这个公式和上面的答案表达式其实是很相像的,我们考虑进一步地变形:

令 \(a_i = d_i - 1\),得到:

\[ans = (\prod_{i=1}^{n}w_i)*(n-2)!*\sum_{(\sum_{i=1}^{n}a_i) = n-2}(\prod_{i=1}^{n}\frac{w_{i}^{a_i}}{a_i!}*(a_i+1))
\]

基本就是一样了,但还有一个 \(\prod_{i=1}^{n}(a_i + 1)\) 阻碍我们。

考虑将它拆开,依次考虑每一个单项式 \(a_{p_1}*a_{p_2}*...*a_{p_m} = \prod_{j=1}^{m}a_{p_j}\) 的贡献,其中 \(1 \le p_1 < p_2 < ... < p_m \le n\)。它的贡献为:

\[\sum_{(\sum_{i=1}^{n}a_i) = n-2}(\prod_{i=1}^{n}\frac{w_{i}^{a_i}}{a_i!}* \prod_{j=1}^{m}a_{p_j})
\]

考虑将这些 a 乘入阶乘中去,令得到的新的阶乘分别为 \(c_1, c_2, ... c_n\),再变一下形得到:

\[\prod_{j=1}^{m}w_{p_j}*\sum_{(\sum_{i=1}^{n}c_i) = n-2-m}(\prod_{i=1}^{n}\frac{w_{i}^{c_i}}{c_i!}) = \prod_{j=1}^{m}w_{p_j}*\frac{(\sum_{i=1}^{n}w_i)^{n-2-m}}{(n-2-m)!}
\]

终于化成了我们想要的东西。

再将上面那个套入我们的答案表达式中,即可得到:

\[ans = \sum_{m=0}^{n-2}(\sum_{1 \le p_1 < p_2 < ... < p_m \le n}\prod_{j=1}^{m}w_{p_j})*\frac{(\sum_{i=1}^{n}w_i)^{n-2-m}}{(n-2-m)!}
\]

中间那个看似很鬼畜的式子用 dp 处理一下就好啦。时间复杂度 O(n^2)。

@accepted code@

#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN = 2000;
const int MOD = int(1E9) + 7;
class ConnectedStates{
public:
int pow_mod(int b, int p) {
int ret = 1;
while( p ) {
if( p & 1 ) ret = 1LL*ret*b%MOD;
b = 1LL*b*b%MOD;
p >>= 1;
}
return ret;
}
int dp[MAXN + 5], w[MAXN + 5], pro, n;
int fct[MAXN + 5], ifct[MAXN + 5], pw[MAXN + 5];
void get_ready() {
dp[0] = 1;
for(int i=1;i<=n;i++)
for(int j=n;j>=1;j--)
dp[j] = (dp[j] + 1LL*dp[j-1]*w[i]%MOD)%MOD;
pw[0] = 1, pw[1] = 0, pro = 1;
for(int i=1;i<=n;i++)
pw[1] = (pw[1] + w[i])%MOD, pro = 1LL*pro*w[i]%MOD;
for(int i=2;i<=n;i++)
pw[i] = 1LL*pw[i-1]*pw[1]%MOD;
fct[0] = 1;
for(int i=1;i<=n;i++)
fct[i] = 1LL*fct[i-1]*i%MOD;
ifct[n] = pow_mod(fct[n], MOD - 2);
for(int i=n-1;i>=0;i--)
ifct[i] = 1LL*ifct[i+1]*(i+1)%MOD;
}
int getSum(vector<int>vec) {
n = vec.size();
for(int i=1;i<=n;i++)
w[i] = vec[i-1];
get_ready();
int ret = 0;
for(int i=0;i<=n-2;i++)
ret = (ret + 1LL*dp[i]*pw[n-2-i]%MOD*ifct[n-2-i]%MOD)%MOD;
return 1LL*ret*fct[n-2]%MOD*pro%MOD;
}
};

@details@

当我看到这个做法的瞬间:woc 这是什么神仙操作。

果真人类智慧啊。

但我觉得这个数据范围好像fft可以过?

@topcoder - SRM697D1L3@ ConnectedStates的更多相关文章

  1. TopCoder kawigiEdit插件配置

    kawigiEdit插件可以提高 TopCoder编译,提交效率,可以管理保存每次SRM的代码. kawigiEdit下载地址:http://code.google.com/p/kawigiedit/ ...

  2. 记第一次TopCoder, 练习SRM 583 div2 250

    今天第一次做topcoder,没有比赛,所以找的最新一期的SRM练习,做了第一道题. 题目大意是说 给一个数字字符串,任意交换两位,使数字变为最小,不能有前导0. 看到题目以后,先想到的找规律,发现要 ...

  3. TopCoder比赛总结表

    TopCoder                        250                              500                                 ...

  4. Topcoder几例C++字符串应用

    本文写于9月初,是利用Topcoder准备应聘时的机试环节临时补习的C++的一部分内容.签约之后,没有再进行练习,此文暂告一段落. 换句话说,就是本文太监了,一直做草稿看着别扭,删掉又觉得可惜,索性发 ...

  5. TopCoder

    在TopCoder下载好luncher,网址:https://www.topcoder.com/community/competitive%20programming/ 选择launch web ar ...

  6. TopCoder SRM 596 DIV 1 250

    body { font-family: Monospaced; font-size: 12pt } pre { font-family: Monospaced; font-size: 12pt } P ...

  7. 求拓扑排序的数量,例题 topcoder srm 654 div2 500

    周赛时遇到的一道比较有意思的题目: Problem Statement      There are N rooms in Maki's new house. The rooms are number ...

  8. TopCoder SRM 590

     第一次做TC,不太习惯,各种调试,只做了一题...... Problem Statement     Fox Ciel is going to play Gomoku with her friend ...

  9. Topcoder Arena插件配置和训练指南

    一. Arena插件配置 1. 下载Arena 指针:http://community.topcoder.com/tc?module=MyHome 左边Competitions->Algorit ...

随机推荐

  1. ActiveMQ消息中间件

    最近学习到ActiveMQ,之前也没有用过相关或者类似的工具,因此特地写个文章进行相关的学习记录. 相关参考博文:https://www.cnblogs.com/cyfonly/p/6380860.h ...

  2. jedis与spring整合及简单的使用RedisTemplate操作

    整理一下redis与spring的整合.以及使用redisTemplate.首先是要导入spring所需要的jar.当然还有 jedis-2.1.0.jar,commons-pool-1.5.4.ja ...

  3. BOM头导致 php获取数据出现问题

    1.BOM头导致 php获取数据出现问题   2.access-token 存redis 解决方案:存redis 一.下载redis驱动 二.配置redis

  4. VMware ESXi 6.7服务器设置开机自动启动虚拟机

    VMware ESXi 6.7服务器设置开机自动启动虚拟机,具体操作步骤如下 1.登陆到VMware ESXi 6.7  web 界面 2.导航器-->主机-->管理  将自动启动修改为 ...

  5. Hdu 1150

    Machine Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  6. C#和JS交互 WebBrowser实例

    本文实现了WebBrowser的简单例子 1.引用System.Windows.Froms.dll 2.引用WindowsFormsIntegration.dll 代码如下: public parti ...

  7. python学习笔记10--协程、IO、IO多路复用

    本节内容 一.协程 1.1.协程概念 1.2.greenlet 1.3.Gevent 1.4.协程之爬虫 1.5.协程之socket 二.论事件驱动与异步IO 三.IO 3.1.概念说明 3.2.IO ...

  8. JS函数式编程 - 概念

    最近在看Typescript,顺便看了一些函数式编程,然后半个国庆假期就没有了.做个笔记,分几个部分写吧. 最开始接触函数式编程的时候,第一个接触的概念就是高阶函数,和柯里化.咋一看,这不就是长期用来 ...

  9. PYTHON网络爬虫与信息提取[scrapy框架应用](单元十、十一)

    scrapy 常用命令 startproject  创建一个新的工程 scrapy startproject <name>[dir] genspider    创建一个爬虫         ...

  10. 洛谷P1929 迷之阶梯

    P1929 迷之阶梯 题目描述 在经过地球防卫小队的数学家连续多日的工作后,外星人发的密码终于得以破解.它 告诉我们在地球某一处的古老遗迹中,存在有对抗这次灾难的秘密武器.防卫小队立即赶 到这处遗迹. ...