@description@

有n个城市,每个城市有个权值wi,任意两个城市i,j之间的道路数有wi∗wj条。

对于每种生成树,设每个点的度数为di,其权值定义为∏di。

问所有无根生成树的权值和。答案对1e9+7取模。

Class:

ConnectedStates

Method:

getSum

Parameters:

int[]

Returns:

int

Constraints

n <= 2000

Examples

0)

{"3, 10"}

Returns: 30

1)

{"2, 2, 2"}

Returns: 96

2)

{"1, 1, 1, 1"}

Returns: 60

@solution@

考虑如果固定了生成树的形态,对应的方案应该是所有树边条数的乘积。

稍微变一变其实就是 \(\prod_{i=1}^{n}w_{i}^{d_i}\),这样就只跟点的度数有关了。

根据我们的 prufer 定理,最终答案为:

\[ans = (n-2)!*\sum_{(\sum_{i=1}^{n}d_i) = 2*n-2}(\prod_{i=1}^{n}\frac{w_{i}^{d_i}}{(d_i-1)!}*d_i)
\]

如果将 i 有关的项整理到一起然后 fft 一下的时间复杂度是 O(n^2*logn),但是我们可以做到更优。

优化的思路来源在于多项式的幂公式,即:

\[(a_1 + a_2 + ... + a_n)^k = k!*\sum_{(\sum_{i=1}^{n}b_i) = k}(\prod_{i=1}^{n}\frac{a_{i}^{b_i}}{{b_i}!})
\]

注意到下面这个公式和上面的答案表达式其实是很相像的,我们考虑进一步地变形:

令 \(a_i = d_i - 1\),得到:

\[ans = (\prod_{i=1}^{n}w_i)*(n-2)!*\sum_{(\sum_{i=1}^{n}a_i) = n-2}(\prod_{i=1}^{n}\frac{w_{i}^{a_i}}{a_i!}*(a_i+1))
\]

基本就是一样了,但还有一个 \(\prod_{i=1}^{n}(a_i + 1)\) 阻碍我们。

考虑将它拆开,依次考虑每一个单项式 \(a_{p_1}*a_{p_2}*...*a_{p_m} = \prod_{j=1}^{m}a_{p_j}\) 的贡献,其中 \(1 \le p_1 < p_2 < ... < p_m \le n\)。它的贡献为:

\[\sum_{(\sum_{i=1}^{n}a_i) = n-2}(\prod_{i=1}^{n}\frac{w_{i}^{a_i}}{a_i!}* \prod_{j=1}^{m}a_{p_j})
\]

考虑将这些 a 乘入阶乘中去,令得到的新的阶乘分别为 \(c_1, c_2, ... c_n\),再变一下形得到:

\[\prod_{j=1}^{m}w_{p_j}*\sum_{(\sum_{i=1}^{n}c_i) = n-2-m}(\prod_{i=1}^{n}\frac{w_{i}^{c_i}}{c_i!}) = \prod_{j=1}^{m}w_{p_j}*\frac{(\sum_{i=1}^{n}w_i)^{n-2-m}}{(n-2-m)!}
\]

终于化成了我们想要的东西。

再将上面那个套入我们的答案表达式中,即可得到:

\[ans = \sum_{m=0}^{n-2}(\sum_{1 \le p_1 < p_2 < ... < p_m \le n}\prod_{j=1}^{m}w_{p_j})*\frac{(\sum_{i=1}^{n}w_i)^{n-2-m}}{(n-2-m)!}
\]

中间那个看似很鬼畜的式子用 dp 处理一下就好啦。时间复杂度 O(n^2)。

@accepted code@

#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN = 2000;
const int MOD = int(1E9) + 7;
class ConnectedStates{
public:
int pow_mod(int b, int p) {
int ret = 1;
while( p ) {
if( p & 1 ) ret = 1LL*ret*b%MOD;
b = 1LL*b*b%MOD;
p >>= 1;
}
return ret;
}
int dp[MAXN + 5], w[MAXN + 5], pro, n;
int fct[MAXN + 5], ifct[MAXN + 5], pw[MAXN + 5];
void get_ready() {
dp[0] = 1;
for(int i=1;i<=n;i++)
for(int j=n;j>=1;j--)
dp[j] = (dp[j] + 1LL*dp[j-1]*w[i]%MOD)%MOD;
pw[0] = 1, pw[1] = 0, pro = 1;
for(int i=1;i<=n;i++)
pw[1] = (pw[1] + w[i])%MOD, pro = 1LL*pro*w[i]%MOD;
for(int i=2;i<=n;i++)
pw[i] = 1LL*pw[i-1]*pw[1]%MOD;
fct[0] = 1;
for(int i=1;i<=n;i++)
fct[i] = 1LL*fct[i-1]*i%MOD;
ifct[n] = pow_mod(fct[n], MOD - 2);
for(int i=n-1;i>=0;i--)
ifct[i] = 1LL*ifct[i+1]*(i+1)%MOD;
}
int getSum(vector<int>vec) {
n = vec.size();
for(int i=1;i<=n;i++)
w[i] = vec[i-1];
get_ready();
int ret = 0;
for(int i=0;i<=n-2;i++)
ret = (ret + 1LL*dp[i]*pw[n-2-i]%MOD*ifct[n-2-i]%MOD)%MOD;
return 1LL*ret*fct[n-2]%MOD*pro%MOD;
}
};

@details@

当我看到这个做法的瞬间:woc 这是什么神仙操作。

果真人类智慧啊。

但我觉得这个数据范围好像fft可以过?

@topcoder - SRM697D1L3@ ConnectedStates的更多相关文章

  1. TopCoder kawigiEdit插件配置

    kawigiEdit插件可以提高 TopCoder编译,提交效率,可以管理保存每次SRM的代码. kawigiEdit下载地址:http://code.google.com/p/kawigiedit/ ...

  2. 记第一次TopCoder, 练习SRM 583 div2 250

    今天第一次做topcoder,没有比赛,所以找的最新一期的SRM练习,做了第一道题. 题目大意是说 给一个数字字符串,任意交换两位,使数字变为最小,不能有前导0. 看到题目以后,先想到的找规律,发现要 ...

  3. TopCoder比赛总结表

    TopCoder                        250                              500                                 ...

  4. Topcoder几例C++字符串应用

    本文写于9月初,是利用Topcoder准备应聘时的机试环节临时补习的C++的一部分内容.签约之后,没有再进行练习,此文暂告一段落. 换句话说,就是本文太监了,一直做草稿看着别扭,删掉又觉得可惜,索性发 ...

  5. TopCoder

    在TopCoder下载好luncher,网址:https://www.topcoder.com/community/competitive%20programming/ 选择launch web ar ...

  6. TopCoder SRM 596 DIV 1 250

    body { font-family: Monospaced; font-size: 12pt } pre { font-family: Monospaced; font-size: 12pt } P ...

  7. 求拓扑排序的数量,例题 topcoder srm 654 div2 500

    周赛时遇到的一道比较有意思的题目: Problem Statement      There are N rooms in Maki's new house. The rooms are number ...

  8. TopCoder SRM 590

     第一次做TC,不太习惯,各种调试,只做了一题...... Problem Statement     Fox Ciel is going to play Gomoku with her friend ...

  9. Topcoder Arena插件配置和训练指南

    一. Arena插件配置 1. 下载Arena 指针:http://community.topcoder.com/tc?module=MyHome 左边Competitions->Algorit ...

随机推荐

  1. Neo4j属性图模型简单介绍

    本文主要是对Neo4j属性图模型简单的介绍. Neo4j是什么? Neo4j是一款是由java语言实现的图数据库,图形数据库将数据以图的数据结构进行存储和管理,并且能够以高度可问的方式优雅地表示任何种 ...

  2. 2019.8.3 NOIP模拟测试12 反思总结【P3938 斐波那契,P3939 数颜色,P3940 分组】

    [题解在下面] 早上5:50,Gekoo同学来到机房并表态:“打暴力,打暴力就对了,打出来我就赢了.” 我:深以为然. (这是个伏笔) 据说hzoi的人还差两次考试[现在是一次了]就要重新分配机房,不 ...

  3. hadoop-hive查询ncdc天气数据实例

    使用hive查询ncdc天气数据 在hive中将ncdc天气数据导入,然后执行查询shell,可以让hive自动生成mapredjob,快速去的想要的数据结果. 1. 在hive中创建ncdc表,这个 ...

  4. Liferay 7.1发布啦

    下载地址: https://cdn.lfrs.sl/releases.liferay.com/portal/7.1.0-m1/liferay-ce-portal-tomcat-7.1-m1-20180 ...

  5. SpringMVC返回json的问题

    在使用springmvc的时候,如果返回值是String, 返回一个json的字符串,在js里面接收会有问题,不能直接当成json使用,要通过eval来转成json. 就像你在js里面直接定义 var ...

  6. java如何访问memcache

    1       Memcache是什么 Memcache是danga.com的一个项目,最早是为 LiveJournal 服务的,目前全世界不少人使用这个缓存项目来构建自己大负载的网站,来分担数据库的 ...

  7. linux开发脚本自动部署及监控

    linux开发脚本自动部署及监控 开发脚本自动部署及监控一.编写脚本自动部署反向代理.web.nfs:要求:1.部署nginx反向代理三个web服务,调度算法使用加权轮询: #!/bin/sh ngx ...

  8. PHP生成短连接的方法

    PHP生成短连接的方法.md PHP生成短连接的方法 直接贴上方法,函数可以查看手册. <?php /** 生成短网址 * @param String $url 原网址 * @return St ...

  9. python 对位运算

  10. SQLServer —— 变量的使用

    一.局部变量的定义与赋值 定义语法: -- 声明一个局部变量 DECLARE @变量名 数据类型 -- 声明多个局部变量 DECLARE @变量名1 数据类型1, @变量名2 数据类型2 赋值语法: ...