传送门:

点我

6121: 学长的情书 

时间限制(普通/Java):2000MS/6000MS     内存限制:65536KByte
总提交: 79            测试通过:2

描述

抹布收到了一封情书,但是这封情书上只有一串数字,发信人多半是将想要表达的意思隐藏在这串数字里,但是直男抹布怎么看得出来呢。抹布对着这串数字百思不得其解,十分苦恼,当然了,一味的苦恼不是抹布的性格,他决定苦中作乐,他想知道,这串数字中有多少组"优美子序列"。他定义,如果某个连续 的子序列中恰好包含k个偶数数字,就称这个序列为"优美子序列"。

现在你看到抹布竟然对着这样一封有着特殊含义的情书玩起了毫不相干的游戏,你看不下去了,你决定...帮助他解出这个问题。

输入

输入数据多组,以EOF结束。

每组数据第一行,包含两个正整数n,k,表示n个数字,k的含义与描述中相同。(1<=n<=10^5,0<=k<=5*10^4)

接下来一行,包含n个正整数m,每个数字之间用一个空格隔开。(1<=m<=10^5)

数据组数小于110组。

输出

对于每组输入,输出优美子序列的组数,占一行。

样例输入

5 3
2 2 1 2 2

样例输出

2

提示

【样例说明】恰好包含3个偶数的连续子序列只有2个,分别是[2,2,1,2],[2,1,2,2]。

【数据范围】

对于45%的数据,1<=n<=10^3,0<=k<=10^3。

对于90%的数据,1<=n<=10^4,0<=k<=10^4。

对于100%的数据,1<=n<=10^5,0<=k<=5*10^4。

吐槽:

看到2KMS,想了个nlogn的二分去大力莽了。。

思路:

老年人做法
预处理偶数的前缀和。
比如说
样例 2 2 1 2 2
前缀和sum数组是1 2 2 3 4
对每个位置pos,对前缀和数组的操作是对pos之后的位置进行二分查找到sum[pos-1]+k,第一个等于这个数位置posLeft和最后一个等于这个数的位置posRight
差值就是当前位置对答案的贡献:ans += posRight-posLeft+1

trick:

1、当K等于0时候,如果二分写的不好要过滤一下(二分写的好的话可能不用?存疑)

2、ans要用long long

复杂度O(nlogn)

应该有双指针的贡献算法更快(待补)

代码:

#include"bits/stdc++.h"
using namespace std;
typedef long long LL;
int a[],k,n;
int sum[];
int SolveLeft(int begin){
int l = begin,r = n;
int key = sum[begin-] + k;
int ans = ;
while(l <= r){
int mid = (l+r) >> ;
if(sum[mid] >= key){
r = mid-;
ans = mid;
}else{
l = mid+;
}
}
return ans;
}
int SolveRight(int begin){
int l = begin,r = n;
int key = sum[begin-] + k;
int ans = ;
while(l <= r){
int mid = (l+r) >> ;
if(sum[mid] > key){
r = mid-;
}else{
l = mid+;
ans = mid;
}
}
return ans;
} int main(){
while(~scanf("%d%d",&n,&k)){
LL ans = ;
sum[] = ;
for(int i = ; i <= n ; i ++){
scanf("%d",a+i);
a[i] = (a[i]&) ? :;
sum[i] = ;
}
for(int i = ; i <= n ; i ++){
sum[i] = sum[i-]+a[i];
}
for(int i = ; i <= n ; i ++){
int L = SolveLeft(i);
int R = SolveRight(i);
if(R < i) continue; //当K等于0的时候会过滤掉误加
if(L != ){
ans += (R-L+1L);
}
}
cout<<ans<<endl;
}
}
/*
5 3
2 2 1 2 2 6 3
2 2 1 2 1 2 5 0
1 0 1 0 1 5 1
2 2 1 2 2 10 0
1 1 0 1 0 1 1 1 0 0 2 1
1 0 2 0
1 0
*/

TOJ 6121: 学长的情书 ( 二分)的更多相关文章

  1. 【TOJ 3369】CD(二分)

    描述 Jack and Jill have decided to sell some of their Compact Discs, while they still have some value. ...

  2. Luogu P1638 逛画展 【二分答案】

    题目描述 博览馆正在展出由世上最佳的 M 位画家所画的图画. wangjy想到博览馆去看这几位大师的作品. 可是,那里的博览馆有一个很奇怪的规定,就是在购买门票时必须说明两个数字, a和b,代表他要看 ...

  3. NOIP系列

    NOIP2015运输计划 唉 真是 这题 卡死我了 tarjan离线lca复杂度O(n) 最后各种卡常,多交几遍才A(洛谷104ms) %%%zk学长609ms 注意二分的时候左边界要定成0 根据题意 ...

  4. 4.28(TG模拟赛)总结

    1.挖地雷 题目背景 NOIp1996提高组第三题 题目描述 在一个地图上有N个地窖(N≤20),每个地窖中埋有一定数量的地雷.同时,给出地窖之间的连接路径.当地窖及其连接的数据给出之后,某人可以从任 ...

  5. TOJ 3750: 二分查找

    3750: 二分查找   Time Limit(Common/Java):3000MS/9000MS     Memory Limit:65536KByteTotal Submit: 1925     ...

  6. toj 4353 Estimation(树状数组+二分查找)

    Estimation 时间限制(普通/Java):5000MS/15000MS     运行内存限制:65536KByte总提交: 6            测试通过: 1 描述 “There are ...

  7. BZOJ 1044 木棍分割 解题报告(二分+DP)

    来到机房刷了一道水(bian’tai)题.题目思想非常简单易懂(我的做法实际上参考了Evensgn 范学长,在此多谢范学长了) 题目摆上: 1044: [HAOI2008]木棍分割 Time Limi ...

  8. BZOJ-1196 公路修建问题 最小生成树Kruskal+(二分??)

    题目中一句话,最大费用最小,这么明显的二分的提示(by 以前morestep学长的经验传授)...但完全没二分,1A后感觉很虚.. 1196: [HNOI2006]公路修建问题 Time Limit: ...

  9. BZOJ-1189 紧急疏散evacuate BFS预处理+最大流+二分判定+神建模!!

    绝世污题,垃圾题,浪费我一整天青春! 1189: [HNOI2007]紧急疏散evacuate Time Limit: 10 Sec Memory Limit: 162 MB Submit: 1262 ...

随机推荐

  1. HDU4251-The Famous ICPC Team Again(划分树)

    Problem Description When Mr. B, Mr. G and Mr. M were preparing for the 2012 ACM-ICPC World Final Con ...

  2. 利用幂等性区分HTTP的POST与PUT请求

    1.什么是幂等性 幂等性概念:幂等通俗来说是指不管进行多少次重复操作,都是实现相同的结果. 2.REST请求中哪些是幂等操作 GET,PUT,DELETE都是幂等操作,而POST不是,以下进行分析: ...

  3. 【JZOJ4854】【NOIP2016提高A组集训第6场11.3】小澳的坐标系

    题目描述 小澳者表也,数学者景也,表动则景随矣. 小澳不喜欢数学,可数学却待小澳如初恋,小澳睡觉的时候也不放过. 小澳的梦境中出现了一个平面直角坐标系,自原点,向四方无限延伸. 小澳在坐标系的原点,他 ...

  4. hdu4310 贪心

    考虑每次血口的要少 就按照一滴血多少伤害来计算.由于直接相除有小数.考虑x/y > a/b  =>  x*b >y*a; #include<stdio.h> #inclu ...

  5. ORA-03113: end-of-file on communication channel 解决方案

    Oracle启动时报如下错误:ORA-03113: end-of-file on communication channel  解决方案如下:1.查看orcle启动日志,确定具体是什么原因引起的错误. ...

  6. python GBK

  7. 免费的容器架构可视化工具 | 阿里云应用高可用服务 AHAS 发布重大新特性

    工具下载链接:点这里.活动发布链接:点这里. 采用容器服务后,了解容器之间的关系及依赖是一个比较有挑战的问题.容器化改造后的实际架构模型可能与预想的架构存在较大的差异,架构师或系统运维人员需要精确地了 ...

  8. HZOJ 集合论

    考场用的set,代码复杂度很低,时间复杂度$O(sum log)$,一发过了大样例,以为1e6的数据很稳了就没再管(然后就挂掉了……) 考后把set化成unordered_set就A了.其实$sum ...

  9. Entity Framework 映射问题

    今天在数据库(mysql)新增了一个字段,但是一直以为添加字段,然后在实体模型中选择 一直是以为选择"添加",就导致有问题,原因就不说,有点蠢,人家都已经存在,还加上去干嘛,我要的 ...

  10. linux环境变量设置和默认执行语句设置

    环境变量设置 1.export export ORACLE_HOME=/usr/local/instantclient_12_2export PATH=$ORACLE_HOME:$PATHexport ...