图像几何变换(缩放、旋转)中的常用的插值算法

在图像几何变换的过程中,常用的插值方法有最邻近插值(近邻取样法)、双线性内插值和三次卷积法。

最邻近插值:

这是一种最为简单的插值方法,在图像中最小的单位就是单个像素,但是在旋转个缩放的过程中如果出现了小数,那么就对这个浮点坐标进行简单的取整,得到一个整数型坐标,这个整数型坐标对应的像素值就是目标像素的像素值。取整的方式就是:取浮点坐标最邻近的左上角的整数点。 
举个例子: 
3*3的灰度图像,其每一个像素点的灰度如下所示

我们要通过缩放,将它变成一个4*4的图像,那么其实相当于放大了4/3倍,从这个倍数我们可以得到这样的比例关系:

根据公式可以计算出目标图像中的(0,0)坐标与原图像中对应的坐标为(0,0) 
(由于分母不能为0,所以我们将公式改写)

然后我们就可以确定出目标图像中(0,0)坐标的像素灰度了,就是234。

然后我们在确定目标图像中的(0,1)坐标与原图像中对应的坐标,同样套用公式: 

我们发现,这里出现了小数,也就是说它对应的原图像的坐标是(0,0.75),显示这是错误的,如果我们不考虑亚像素情况,那么一个像素单位就是图像中最小的单位了,那么按照最临近插值算法,我们找到距离0.75最近的最近的整数,也就是1,那么对应的原图的坐标也就是(0,1),像素灰度为67。

双线性内插值:

对于一个目的像素,设置坐标通过反向变换得到的浮点坐标为(i+u,j+v),其中i、j均为非负整数,u、v为[0,1)区间的浮点数,则这个像素得值 f(i+u,j+v) 可由原图像中坐标为 (i,j)、(i+1,j)、(i,j+1)、(i+1,j+1)所对应的周围四个像素的值决定,即:

f(i+u,j+v) = (1-u)(1-v)f(i,j) + (1-u)vf(i,j+1) + u(1-v)f(i+1,j) + uvf(i+1,j+1)

其中f(i,j)表示源图像(i,j)处的的像素值。

那么还是上面的例子,目标图像中(0,1)对应的原图像浮点坐标是(0,0.75),套用上面的公式这个坐标可以写成(0+0,0+0.75),其中i=0,j=0,u=0,v=0.75 
我们套用公式看一下它最后的灰度 
f(i+u,j+v) = 0.25*f(0,0)+0.75*f(0,1)=0.25*234+0.75*67 
约等于108

这就是双线性内插值法。双线性内插值法计算量大,但缩放后图像质量高,不会出现像素值不连续的的情况。由于双线性插值具有低通滤波器的性质,使高频分量受损,所以可能会使图像轮廓在一定程度上变得模糊。

三次卷积法:

其实这个方法在好像有很多叫法,它在OpenCV中被命名为INTER_CUBIC,就是立方(三次)的意思,现在我把它和三次卷积法认为是同一种算法,引用一个帖子里面的话:

全称双立方(三次)卷积插值。 
代码或许有不同写法,实现方式就一种 
该算法是对函数 sin x / x 的一种近似,也就是说 原图像对目标图像的影响 
等于 目标点对应于原图像点周围 x距离的点,按照 sin x / x 比例 的加权平均 。 
这里x代表,周围得点跟目标点, x或者 y 轴 对应于原图的相对位置。 
sin x / x 是归一化了的,实际应用的是近似公式

f(i+u,j+v) = [A] * [B] * [C] 
[A]=[ S(u + 1) S(u + 0) S(u - 1) S(u - 2) ] 
  ┏ f(i-1, j-1) f(i-1, j+0) f(i-1, j+1) f(i-1, j+2) ┓ 
[B]=┃ f(i+0, j-1) f(i+0, j+0) f(i+0, j+1) f(i+0, j+2) ┃ 
  ┃ f(i+1, j-1) f(i+1, j+0) f(i+1, j+1) f(i+1, j+2) ┃ 
  ┗ f(i+2, j-1) f(i+2, j+0) f(i+2, j+1) f(i+2, j+2) ┛ 
  ┏ S(v + 1) ┓ 
[C]=┃ S(v + 0) ┃ 
  ┃ S(v - 1) ┃ 
  ┗ S(v - 2) ┛ 
   ┏ 1-2*Abs(x)^2+Abs(x)^3      , 0<=Abs(x)<1 ┓ 
S(x)={ 4-8*Abs(x)+5*Abs(x)^2-Abs(x)^3 , 1<=Abs(x)<2 ┃ 
   ┗ 0                , Abs(x)>=2 ┛

S(x)是对 Sin(x*Pi)/x 的逼近(Pi是圆周率——π)

        public enum ZoomType { NearestNeighborInterpolation , BilinearInterpolation }
/// <summary>
/// 图像缩放
/// </summary>
/// <param name="srcBmp">原始图像</param>
/// <param name="width">目标图像宽度</param>
/// <param name="height">目标图像高度</param>
/// <param name="dstBmp">目标图像</param>
/// <param name="GetNearOrBil">缩放选用的算法</param>
/// <returns>处理成功 true 失败 false</returns>
public static bool Zoom(Bitmap srcBmp, double ratioW, double ratioH, out Bitmap dstBmp, ZoomType zoomType)
{//ZoomType为自定义的枚举类型
if (srcBmp == null)
{
dstBmp = null;
return false;
}
//若缩放大小与原图一样,则返回原图不做处理
if ((ratioW == 1.0) && ratioH == 1.0)
{
dstBmp = new Bitmap(srcBmp);
return true;
}
//计算缩放高宽
double height = ratioH * (double)srcBmp.Height;
double width = ratioW * (double)srcBmp.Width;
dstBmp = new Bitmap((int)width, (int)height); BitmapData srcBmpData = srcBmp.LockBits(new Rectangle(, , srcBmp.Width, srcBmp.Height), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb);
BitmapData dstBmpData = dstBmp.LockBits(new Rectangle(, , dstBmp.Width, dstBmp.Height), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb);
unsafe
{
byte* srcPtr = null;
byte* dstPtr = null;
int srcI = ;
int srcJ = ;
double srcdI = ;
double srcdJ = ;
double a = ;
double b = ;
double F1 = ;//横向插值所得数值
double F2 = ;//纵向插值所得数值
if (zoomType==ZoomType.NearestNeighborInterpolation)
{//邻近插值法 for (int i = ; i < dstBmp.Height; i++)
{
srcI = (int)(i / ratioH);//srcI是此时的i对应的原图像的高
srcPtr = (byte*)srcBmpData.Scan0 + srcI * srcBmpData.Stride;
dstPtr = (byte*)dstBmpData.Scan0 + i * dstBmpData.Stride;
for (int j = ; j < dstBmp.Width; j++)
{
dstPtr[j * ] = srcPtr[(int)(j / ratioW) * ];//j / ratioW求出此时j对应的原图像的宽
dstPtr[j * + ] = srcPtr[(int)(j / ratioW) * + ];
dstPtr[j * + ] = srcPtr[(int)(j / ratioW) * + ];
}
}
}
else if (zoomType==ZoomType.BilinearInterpolation)
{//双线性插值法
byte* srcPtrNext = null;
for (int i = ; i < dstBmp.Height; i++)
{
srcdI = i / ratioH;
srcI = (int)srcdI;//当前行对应原始图像的行数
srcPtr = (byte*)srcBmpData.Scan0 + srcI * srcBmpData.Stride;//指原始图像的当前行
srcPtrNext = (byte*)srcBmpData.Scan0 + (srcI + ) * srcBmpData.Stride;//指向原始图像的下一行
dstPtr = (byte*)dstBmpData.Scan0 + i * dstBmpData.Stride;//指向当前图像的当前行
for (int j = ; j < dstBmp.Width; j++)
{
srcdJ = j / ratioW;
srcJ = (int)srcdJ;//指向原始图像的列
if (srcdJ < || srcdJ > srcBmp.Width - || srcdI < || srcdI > srcBmp.Height - )
{//避免溢出(也可使用循环延拓)
dstPtr[j * ] = ;
dstPtr[j * + ] = ;
dstPtr[j * + ] = ;
continue;
}
a = srcdI - srcI;//计算插入的像素与原始像素距离(决定相邻像素的灰度所占的比例)
b = srcdJ - srcJ;
for (int k = ; k < ; k++)
{//插值 公式:f(i+p,j+q)=(1-p)(1-q)f(i,j)+(1-p)qf(i,j+1)+p(1-q)f(i+1,j)+pqf(i+1, j + 1)
F1 = ( - b) * srcPtr[srcJ * + k] + b * srcPtr[(srcJ + ) * + k];
F2 = ( - b) * srcPtrNext[srcJ * + k] + b * srcPtrNext[(srcJ + ) * + k];
dstPtr[j * + k] = (byte)(( - a) * F1 + a * F2);
}
}
}
}
}
srcBmp.UnlockBits(srcBmpData);
dstBmp.UnlockBits(dstBmpData);
return true;
}

最近邻插值放大5倍:

双线性插值放大5倍:

c#数字图像处理(十)图像缩放的更多相关文章

  1. Win8 Metro(C#) 数字图像处理--1 图像打开,保存

    原文:Win8 Metro(C#) 数字图像处理--1 图像打开,保存 作为本专栏的第一篇,必不可少的需要介绍一下图像的打开与保存,一便大家后面DEMO的制作.   Win8Metro编程中,图像相关 ...

  2. Win8 Metro(C#)数字图像处理--4图像颜色空间描述

    原文:Win8 Metro(C#)数字图像处理--4图像颜色空间描述  图像颜色空间是图像颜色集合的数学表示,本小节将针对几种常见颜色空间做个简单介绍. /// <summary> / ...

  3. OpenCV - opencv3 图像处理 之 图像缩放( python与c++实现 )

    转自:https://www.cnblogs.com/dyufei/p/8205121.html 一. 主要函数介绍 1) 图像大小变换 cvResize () 原型: voidcvResize(co ...

  4. 数字图像处理,图像锐化算法的C++实现

    http://blog.csdn.net/ebowtang/article/details/38961399 之前一段我们提到的算法都是和平滑有关, 经过平滑算法之后, 图像锐度降低, 降低到一定程度 ...

  5. 数字图像处理:图像的灰度变换(Matlab实现)

    (1)线性变换:通过建立灰度映射来调整源图像的灰度. k>1增强图像的对比度:k=1调节图像亮度,通过改变d值达到调节亮度目的:0 i = imread('theatre.jpg');i = i ...

  6. 数字图像处理界标准图像 Lena 后面的故事

    熟悉图像处理或者压缩的工程师.研究人员和学生,经常在他们的实验或者项目任务里使用"Lenna"或者"Lena"的图像.Lenna 图像已经成为被广泛使用的测试图 ...

  7. opencv3 图像处理(一)图像缩放( python与c++ 实现)

    opencv3 图像处理 之 图像缩放( python与c++实现 ) 一. 主要函数介绍 1) 图像大小变换 Resize () 原型: void Resize(const CvArr* src,C ...

  8. 【数字图像处理】六.MFC空间几何变换之图像平移、镜像、旋转、缩放具体解释

    本文主要讲述基于VC++6.0 MFC图像处理的应用知识,主要结合自己大三所学课程<数字图像处理>及课件进行解说,主要通过MFC单文档视图实现显示BMP图片空间几何变换.包含图像平移.图形 ...

  9. 【python图像处理】图像的缩放、旋转与翻转

    [python图像处理]图像的缩放.旋转与翻转 图像的几何变换,如缩放.旋转和翻转等,在图像处理中扮演着重要的角色,python中的Image类分别提供了这些操作的接口函数,下面进行逐一介绍. 1.图 ...

随机推荐

  1. LightOJ - 1265 Island of Survival (概率dp)

    You are in a reality show, and the show is way too real that they threw into an island. Only two kin ...

  2. JNI相关使用记录

    JNI 工作流程 java层调用system.load方法. 通过classloader拿到了so文件的绝对路径,然后调用nativeload()方法. 通过linux下的dlopen方法,加载并查找 ...

  3. 【u033】地震逃生

    Time Limit: 1 second Memory Limit: 64 MB [问题描述] 汶川地震发生时,四川**中学正在上课,一看地震发生,老师们立刻带领x名学生逃跑,整个学校可以抽象地看成一 ...

  4. vue中的computed和watch区别

    在vue.js官方文档中看到computed和watch获取全名的一个例子: var var vm = new Vue({ el: '#demo', data: { firstName: 'Foo', ...

  5. shell截取字符串的8种方法

    参考文献: linux中shell截取字符串方法总结 [Linux]如何在Shell脚本中计算字符串长度? 截取字符串的方法一共有八种,主要为以下方法 shell中截取字符串的方法有很多中, ${ex ...

  6. python 多线程两种实现方式,Python多线程下的_strptime问题,

    python 多线程两种实现方式 原创 Linux操作系统 作者:杨奇龙 时间:2014-06-08 20:24:26  44021  0 目前python 提供了几种多线程实现方式 thread,t ...

  7. 树莓派4安装ftp服务端

    vsftpd是开源的轻量级的常用ftp服务器.   1,安装vsftpd服务器 (约400KB) sudo apt-get install vsftpd     2,启动ftp服务 sudo serv ...

  8. 机器学习 - Python 02

    好了,咱们接着上一节的内容,继续学习机器学习中的Python语法部分.这一节算是Python语法的最后一节了.也就是说如果真的看懂了这两节的内容,理论上说就机器学习的领域或者方向,语言已经不是问题了. ...

  9. JVM内存结构探秘及编码实战

    了解JVM内存结构的目的 在Java的开发过程中,因为有JVM自动内存管理机制,不再需要像在C.C++开发那样手动释放对象的内存空间,不容易出现内存泄漏和内存溢出的问题.但是,正是由于把内存管理的权利 ...

  10. org.apache.subversion.javahl.ClientException: Item is not readable 解决办法

    在使用eclise安装的插件subclipse查看svn的提交历史记录的时候,提示org.apache.subversion.javahl.ClientException: Item is not r ...