Embedding Layer
在深度学习实验中经常会遇Eembedding层,然而网络上的介绍可谓是相当含糊。比如 Keras中文文档中对嵌入层 Embedding的介绍除了一句 “嵌入层将正整数(下标)转换为具有固定大小的向量”之外就不愿做过多的解释。那么我们为什么要使用嵌入层 Embedding呢? 主要有这两大原因:
1、使用One-hot 方法编码的向量会很高维也很稀疏。假设我们在做自然语言处理(NLP)中遇到了一个包含2000个词的字典,当时用One-hot编码时,每一个词会被一个包含2000个整数的向量来表示,其中1999个数字是0,要是我的字典再大一点的话这种方法的计算效率岂不是大打折扣?
2、训练神经网络的过程中,每个嵌入的向量都会得到更新。如果你看到了博客上面的图片你就会发现在多维空间中词与词之间有多少相似性,这使我们能可视化的了解词语之间的关系,不仅仅是词语,任何能通过嵌入层 Embedding 转换成向量的内容都可以这样做。
Eg 1:
对于句子“deep learning is very deep”:
使用嵌入层embedding 的第一步是通过索引对该句子进行编码,这里我们给每一个不同的句子分配一个索引,上面的句子就会变成这样:
"1 2 3 4 1"
接下来会创建嵌入矩阵,我们要决定每一个索引需要分配多少个‘潜在因子’,这大体上意味着我们想要多长的向量,通常使用的情况是长度分配为32和50。在这篇博客中,为了保持文章可读性这里为每个索引指定6个潜在因子。这样,我们就可以使用嵌入矩阵来而不是庞大的one-hot编码向量来保持每个向量更小。简而言之,嵌入层embedding在这里做的就是把单词“deep”用向量[.32, .02, .48, .21, .56, .15]来表达。然而并不是每一个单词都会被一个向量来代替,而是被替换为用于查找嵌入矩阵中向量的索引。
eg 2:
假如我们有一个100W X10W的矩阵,用它乘上一个10W X 20的矩阵,我们可以把它降到100W X 20,瞬间量级降了。。。10W/20=5000倍!!!
这就是嵌入层的一个作用——降维。
然后中间那个10W X 20的矩阵,可以理解为查询表,也可以理解为映射表,也可以理解为过度表;
参考链接:https://blog.csdn.net/weixin_42078618/article/details/82999906
https://blog.csdn.net/u010412858/article/details/77848878
PS: pixel wise metric learning

嵌入模型:在所提出的模型f中,其中每个像素x j,i被表示为d维嵌入向量ej,i = f(xj,i)。理想地,属于相同对象的像素在嵌入空间中彼此靠近,并且属于不同对象的像素彼此远离。
Embedding Layer的更多相关文章
- NLP 中的embedding layer
https://blog.csdn.net/chuchus/article/details/78386059 词汇是语料库的基本元素, 所以, 使用embedding layer来学习词嵌入, 将一个 ...
- Word Embedding/RNN/LSTM
Word Embedding Word Embedding是一种词的向量表示,比如,对于这样的"A B A C B F G"的一个序列,也许我们最后能得到:A对应的向量为[0.1 ...
- ConceptVector: Text Visual Analytics via Interactive Lexicon Building using Word Embedding
论文简介 本文是对词嵌入的一种应用,用户可以根据自己的需要创建concept,系统根据用户提供的seed word推荐其他词汇,以帮助用户更高的构建自己的concept.同时用户可以利用自己创建的 ...
- 神经网络中embedding层作用——本质就是word2vec,数据降维,同时可以很方便计算同义词(各个word之间的距离),底层实现是2-gram(词频)+神经网络
Embedding tflearn.layers.embedding_ops.embedding (incoming, input_dim, output_dim, validate_indices= ...
- (转) How to Train a GAN? Tips and tricks to make GANs work
How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While r ...
- RNN 入门教程 Part 4 – 实现 RNN-LSTM 和 GRU 模型
转载 - Recurrent Neural Network Tutorial, Part 4 – Implementing a GRU/LSTM RNN with Python and Theano ...
- How much training data do you need?
How much training data do you need? //@樵夫上校: 0. 经验上,10X规则(训练数据是模型参数量的10倍)适用与大多数模型,包括shallow networ ...
- 【IOS笔记】Views
Views Because view objects are the main way your application interacts with the user, they have many ...
- (转) Written Memories: Understanding, Deriving and Extending the LSTM
R2RT Written Memories: Understanding, Deriving and Extending the LSTM Tue 26 July 2016 When I was ...
随机推荐
- httpclient工具使用(org.apache.httpcomponents.httpclient)
httpclient工具使用(org.apache.httpcomponents.httpclient) 引入依赖 <dependency> <groupId>org.apac ...
- Centos7 minimal 安装npm
最小版本缺少很多源,需要手动去添加源 如何去判断yum中 有没有 npm 的源呢 yum list | grep npm 如果是这样的,就代表需要自己去添加 curl -sL -o /etc/yum. ...
- Hive-2.3.6 安装
本安装依赖Haddop2.8安装 https://www.cnblogs.com/xibuhaohao/p/11772031.html 一.下载Hive与MySQL jdbc 连接驱动 apache- ...
- H - Almost Union-Find
//带删除操作的并查集 //题意:给你一个1~n的集合,有三种操作 // 1: 把p和q所在的集合合并 //2:把p移到q所在的集合中 //3:返回p所在集合中的元素个数和元素的和 //第二种操作不能 ...
- LibreOJ #6212. 「美团 CodeM 决赛」melon
二次联通门 : LibreOJ #6212. 「美团 CodeM 决赛」melon /* LibreOJ #6212. 「美团 CodeM 决赛」melon MDZZ 这是决赛题?? */ #incl ...
- 【一起来烧脑】读懂Promise知识体系
知识体系 Promise基础语法,如何处理错误,简单介绍异步函数 内容 错误处理的两种方式: reject('错误信息').then(null, message => {}) throw new ...
- Day14:CSS垂直居中
verticle-align:middle vertical-align:middle实现css垂直居中是常用的方法,但是需要注意,vertical生效的前提是diaplay:inline-block ...
- Linux 文件系统引起的云盘文件系统异常导致 MySQL 数据页损坏事故恢复复盘
事故的起因是因为当我访问某个数据库的某个表的时候,MySQL 立即出现崩溃并且去查看 MySQL 的错误日志出现类似信息 --09T05::.232564Z [ERROR] InnoDB: Space ...
- python 日志内容提取
问题:如下,一个很大的日志文件,提取 start: 到 end: 标志中间的内容 日志文件a.log xxxxx yyyyy start: start: hahahaha end: start: ha ...
- [SDOI2009][BZOJ 1226]学校食堂
Description 小F 的学校在城市的一个偏僻角落,所有学生都只好在学校吃饭.学校有一个食堂,虽然简陋,但食堂大厨总能做出让同学们满意的菜肴.当然,不同的人口味也不一定相同,但每个人的口味都可以 ...