数据源Source

RPC异构流数据交换

  • Avro Source
  • Thrift Source

文件或目录变化监听

  • Exec Source
  • Spooling Directory Source
  • Taildir Source

MQ或队列订阅数据持续监听

  • JMS Source
  • SSL and JMS Source
  • Kafka Source

Network类数据交换

  • NetCat TCP Source
  • NetCat UDP Source
  • HTTP Source
  • Syslog Sources
  • Syslog TCP Source
  • Multiport Syslog TCP Source
  • Syslog UDP Source

定制源

  • Custom Source

Sink

  • HDFS Sink
  • Hive Sink
  • Logger Sink
  • Avro Sink
  • Thrift Sink
  • IRC Sink
  • File Roll Sink
  • HBaseSinks
  • HBaseSink
  • HBase2Sink
  • AsyncHBaseSink
  • MorphlineSolrSink
  • ElasticSearchSink
  • Kite Dataset Sink
  • Kafka Sink
  • HTTP Sink
  • Custom Sink

案例

1、监听文件变化 

exec-memory-logger.properties

#指定agent的sources,sinks,channels
a1.sources = s1
a1.sinks = k1
a1.channels = c1 #配置sources属性
a1.sources.s1.type = exec
a1.sources.s1.command = tail -F /tmp/log.txt
a1.sources.s1.shell = /bin/bash -c
a1.sources.s1.channels = c1 #配置sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = 192.168.1.103
a1.sinks.k1.port = 8888
a1.sinks.k1.batch-size = 1
a1.sinks.k1.channel = c1 #配置channel类型
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

启动

flume-ng agent --conf conf --conf-file /usr/app/apache-flume-1.8.0-bin/exec-memory-logger.properties --name a1 -Dflume.root.logger=INFO,console

测试

echo "asfsafsf" >> /tmp/log.txt

2、TCP NetCat监听

netcat.properties
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1 # Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444 # Describe the sink
a1.sinks.k1.type = logger # Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

启动

flume-ng agent --conf conf --conf-file /usr/app/apache-flume-1.8.0-bin/netcat.properties --name a1 -Dflume.root.logger=INFO,console

测试

telnet localhost 44444

3、Kafka读、写 (读:从kafka到log,写:从file到kafka)

read-kafka.properties 、write-kafka.properties

#指定agent的sources,sinks,channels
a1.sources = s1
a1.sinks = k1
a1.channels = c1 #配置sources属性
a1.sources.s1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.s1.channels = c1
a1.sources.s1.batchSize = 5000
a1.sources.s1.batchDurationMillis = 2000
a1.sources.s1.kafka.bootstrap.servers = 192.168.1.103:9092
a1.sources.s1.kafka.topics = test1
a1.sources.s1.kafka.consumer.group.id = custom.g.id #将sources与channels进行绑定
a1.sources.s1.channels = c1 #配置sink
a1.sinks.k1.type = logger #将sinks与channels进行绑定
a1.sinks.k1.channel = c1 #配置channel类型
a1.channels.c1.type = memory
a1.sources = s1
a1.channels = c1
a1.sinks = k1 a1.sources.s1.type=exec
a1.sources.s1.command=tail -F /tmp/kafka.log
a1.sources.s1.channels=c1 #设置Kafka接收器
a1.sinks.k1.type= org.apache.flume.sink.kafka.KafkaSink
#设置Kafka地址
a1.sinks.k1.brokerList=192.168.1.103:9092
#设置发送到Kafka上的主题
a1.sinks.k1.topic=test1
#设置序列化方式
a1.sinks.k1.serializer.class=kafka.serializer.StringEncoder
a1.sinks.k1.channel=c1 a1.channels.c1.type=memory
a1.channels.c1.capacity=10000
a1.channels.c1.transactionCapacity=100

启动

flume-ng agent --conf conf --conf-file /usr/app/apache-flume-1.8.0-bin/read-kafka.properties --name a1 -Dflume.root.logger=INFO,console

flume-ng agent --conf conf --conf-file /usr/app/apache-flume-1.8.0-bin/write-kafka.properties --name a1 -Dflume.root.logger=INFO,console

测试

# 创建用于测试主题
bin/kafka-topics.sh --create \
--bootstrap-server 192.168.1.103:9092 \
--replication-factor 1 \
--partitions 1 \
--topic test1
# 启动 Producer,用于发送测试数据:
bin/kafka-console-producer.sh --broker-list 192.168.1.103:9092 --topic test1

4、定制源

a1.sources = r1
a1.channels = c1
a1.sources.r1.type = org.example.MySource
a1.sources.r1.channels = c1

5、HDFS Sink

spooling-memory-hdfs.properties ,监听目录变化,将新建的文件传到HDFS

#指定agent的sources,sinks,channels
a1.sources = s1
a1.sinks = k1
a1.channels = c1 #配置sources属性
a1.sources.s1.type =spooldir
a1.sources.s1.spoolDir =/tmp/log2
a1.sources.s1.basenameHeader = true
a1.sources.s1.basenameHeaderKey = fileName
#将sources与channels进行绑定
a1.sources.s1.channels =c1 #配置sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /flume/events/%y-%m-%d/%H/
a1.sinks.k1.hdfs.filePrefix = %{fileName}
#生成的文件类型,默认是Sequencefile,可用DataStream,则为普通文本
a1.sinks.k1.hdfs.fileType = DataStream
a1.sinks.k1.hdfs.useLocalTimeStamp = true
#将sinks与channels进行绑定
a1.sinks.k1.channel = c1 #配置channel类型
a1.channels.c1.type = memory

测试

hdfs dfs -ls /flume/events/19-11-21/15

6、Hive Sink

a1.channels = c1
a1.channels.c1.type = memory
a1.sinks = k1
a1.sinks.k1.type = hive
a1.sinks.k1.channel = c1
a1.sinks.k1.hive.metastore = thrift://127.0.0.1:9083
a1.sinks.k1.hive.database = logsdb
a1.sinks.k1.hive.table = weblogs
a1.sinks.k1.hive.partition = asia,%{country},%y-%m-%d-%H-%M
a1.sinks.k1.useLocalTimeStamp = false
a1.sinks.k1.round = true
a1.sinks.k1.roundValue = 10
a1.sinks.k1.roundUnit = minute
a1.sinks.k1.serializer = DELIMITED
a1.sinks.k1.serializer.delimiter = "\t"
a1.sinks.k1.serializer.serdeSeparator = '\t'
a1.sinks.k1.serializer.fieldnames =id,,msg

7、Avro Source、Avro Sink

exec-memory-avro.properties、avro-memory-log.properties

#指定agent的sources,sinks,channels
a1.sources = s1
a1.sinks = k1
a1.channels = c1 #配置sources属性
a1.sources.s1.type = exec
a1.sources.s1.command = tail -F /tmp/log.txt
a1.sources.s1.shell = /bin/bash -c
a1.sources.s1.channels = c1 #配置sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = 192.168.1.103
a1.sinks.k1.port = 8888
a1.sinks.k1.batch-size = 1
a1.sinks.k1.channel = c1 #配置channel类型
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
#指定agent的sources,sinks,channels
a2.sources = s2
a2.sinks = k2
a2.channels = c2 #配置sources属性
a2.sources.s2.type = avro
a2.sources.s2.bind = 192.168.1.103
a2.sources.s2.port = 8888 #将sources与channels进行绑定
a2.sources.s2.channels = c2 #配置sink
a2.sinks.k2.type = logger #将sinks与channels进行绑定
a2.sinks.k2.channel = c2 #配置channel类型
a2.channels.c2.type = memory
a2.channels.c2.capacity = 1000
a2.channels.c2.transactionCapacity = 100

启动


flume-ng agent --conf conf --conf-file /usr/app/apache-flume-1.8.0-bin/avro-memory-log.properties --name a2 -Dflume.root.logger=INFO,console

flume-ng agent --conf conf --conf-file /usr/app/apache-flume-1.8.0-bin/exec-memory-avro.properties --name a1 -Dflume.root.logger=INFO,console

测试,使用一个Avro客户端发送数据

import org.apache.flume.Event;
import org.apache.flume.EventDeliveryException;
import org.apache.flume.event.EventBuilder;
import org.apache.flume.api.SecureRpcClientFactory;
import org.apache.flume.api.RpcClientConfigurationConstants;
import org.apache.flume.api.RpcClient;
import java.nio.charset.Charset;
import java.util.Properties; public class MyApp {
public static void main(String[] args) {
MySecureRpcClientFacade client = new MySecureRpcClientFacade();
// Initialize client with the remote Flume agent's host, port
Properties props = new Properties();
props.setProperty(RpcClientConfigurationConstants.CONFIG_CLIENT_TYPE, "thrift");
props.setProperty("hosts", "h1");
props.setProperty("hosts.h1", "client.example.org"+":"+ String.valueOf(8888)); // Initialize client with the kerberos authentication related properties
props.setProperty("kerberos", "true");
props.setProperty("client-principal", "flumeclient/client.example.org@EXAMPLE.ORG");
props.setProperty("client-keytab", "/tmp/flumeclient.keytab");
props.setProperty("server-principal", "flume/server.example.org@EXAMPLE.ORG");
client.init(props); // Send 10 events to the remote Flume agent. That agent should be
// configured to listen with an AvroSource.
String sampleData = "Hello Flume!";
for (int i = 0; i < 10; i++) {
client.sendDataToFlume(sampleData);
} client.cleanUp();
}
} class MySecureRpcClientFacade {
private RpcClient client;
private Properties properties; public void init(Properties properties) {
// Setup the RPC connection
this.properties = properties;
// Create the ThriftSecureRpcClient instance by using SecureRpcClientFactory
this.client = SecureRpcClientFactory.getThriftInstance(properties);
} public void sendDataToFlume(String data) {
// Create a Flume Event object that encapsulates the sample data
Event event = EventBuilder.withBody(data, Charset.forName("UTF-8")); // Send the event
try {
client.append(event);
} catch (EventDeliveryException e) {
// clean up and recreate the client
client.close();
client = null;
client = SecureRpcClientFactory.getThriftInstance(properties);
}
} public void cleanUp() {
// Close the RPC connection
client.close();
}
}

8、Elasticsearch Sink

a1.channels = c1
a1.sinks = k1
a1.sinks.k1.type = elasticsearch
a1.sinks.k1.hostNames = 127.0.0.1:9200,127.0.0.2:9300
a1.sinks.k1.indexName = foo_index
a1.sinks.k1.indexType = bar_type
a1.sinks.k1.clusterName = foobar_cluster
a1.sinks.k1.batchSize = 500
a1.sinks.k1.ttl = 5d
a1.sinks.k1.serializer = org.apache.flume.sink.elasticsearch.ElasticSearchDynamicSerializer
a1.sinks.k1.channel = c1

9、定制Source、Sink开发

public class MySink extends AbstractSink implements Configurable {
private String myProp; @Override
public void configure(Context context) {
String myProp = context.getString("myProp", "defaultValue"); // Process the myProp value (e.g. validation) // Store myProp for later retrieval by process() method
this.myProp = myProp;
} @Override
public void start() {
// Initialize the connection to the external repository (e.g. HDFS) that
// this Sink will forward Events to ..
} @Override
public void stop () {
// Disconnect from the external respository and do any
// additional cleanup (e.g. releasing resources or nulling-out
// field values) ..
} @Override
public Status process() throws EventDeliveryException {
Status status = null; // Start transaction
Channel ch = getChannel();
Transaction txn = ch.getTransaction();
txn.begin();
try {
// This try clause includes whatever Channel operations you want to do Event event = ch.take(); // Send the Event to the external repository.
// storeSomeData(e); txn.commit();
status = Status.READY;
} catch (Throwable t) {
txn.rollback(); // Log exception, handle individual exceptions as needed status = Status.BACKOFF; // re-throw all Errors
if (t instanceof Error) {
throw (Error)t;
}
}
return status;
}
}
public class MySource extends AbstractSource implements Configurable, PollableSource {
private String myProp; @Override
public void configure(Context context) {
String myProp = context.getString("myProp", "defaultValue"); // Process the myProp value (e.g. validation, convert to another type, ...) // Store myProp for later retrieval by process() method
this.myProp = myProp;
} @Override
public void start() {
// Initialize the connection to the external client
} @Override
public void stop () {
// Disconnect from external client and do any additional cleanup
// (e.g. releasing resources or nulling-out field values) ..
} @Override
public Status process() throws EventDeliveryException {
Status status = null; try {
// This try clause includes whatever Channel/Event operations you want to do // Receive new data
Event e = getSomeData(); // Store the Event into this Source's associated Channel(s)
getChannelProcessor().processEvent(e); status = Status.READY;
} catch (Throwable t) {
// Log exception, handle individual exceptions as needed status = Status.BACKOFF; // re-throw all Errors
if (t instanceof Error) {
throw (Error)t;
}
} finally {
txn.close();
}
return status;
}
}

Flume的Source、Sink总结,及常用使用场景的更多相关文章

  1. Flume:source和sink

    Flume – 初识flume.source和sink 目录基本概念常用源 Source常用sink 基本概念  什么叫flume? 分布式,可靠的大量日志收集.聚合和移动工具.  events ...

  2. FLUME KAFKA SOURCE 和 SINK 使用同一个 TOPIC

    FLUME KAFKA SOURCE 和 SINK 使用同一个 TOPIC 最近做了一个事情,过滤下kakfa中的数据后,做这个就用到了flume,直接使用flume source 和 flume s ...

  3. 一次flume exec source采集日志到kafka因为单条日志数据非常大同步失败的踩坑带来的思考

    本次遇到的问题描述,日志采集同步时,当单条日志(日志文件中一行日志)超过2M大小,数据无法采集同步到kafka,分析后,共踩到如下几个坑.1.flume采集时,通过shell+EXEC(tail -F ...

  4. 泛函编程(36)-泛函Stream IO:IO数据源-IO Source & Sink

    上期我们讨论了IO处理过程:Process[I,O].我们说Process就像电视信号盒子一样有输入端和输出端两头.Process之间可以用一个Process的输出端与另一个Process的输入端连接 ...

  5. 把Flume的Source设置为 Spooling directory source

    把Flume的Source设置为 Spooling directory source,在设定的目录下放置需要读取的文件,一些文件在读取过程中会报错. 文件格式和报错如下: 实验一 读取汉子和“:&qu ...

  6. flume http source示例讲解

    一.介绍 flume自带的Http Source可以通过Http Post接收事件. 场景:对于有些应用程序环境,它可能不能部署Flume SDK及其依赖项,或客户端代码倾向于通过HTTP而不是Flu ...

  7. Redis的Python实践,以及四中常用应用场景详解——学习董伟明老师的《Python Web开发实践》

    首先,简单介绍:Redis是一个基于内存的键值对存储系统,常用作数据库.缓存和消息代理. 支持:字符串,字典,列表,集合,有序集合,位图(bitmaps),地理位置,HyperLogLog等多种数据结 ...

  8. Flume组件source,channel,sink源码分析

    LifeCycleState: IDLE, START, STOP, ERROR [Source]: org.apache.flume.Source 继承LifeCycleAware{stop() + ...

  9. Flume笔记--source端监听目录,sink端上传到HDFS

    官方文档参数解释:http://flume.apache.org/FlumeUserGuide.html#hdfs-sink 需要注意:文件格式,fileType=DataStream 默认为Sequ ...

随机推荐

  1. k8s时区问题解决方案

    前几天在使用k8s中的CronJob时发现了一个很奇怪的问题, 按照官方文档的demo跑起来是没有任何问题的, 但是当我想要设置每天一个固定时间点例如12点20执行一个job的时候,到了时间之后无论如 ...

  2. 移动端调试神器vconsole,手机端网页的调试工具Eruda

    移动端调试神器vconsole,手机端网页的调试工具Eruda 移动端中使用 vConsole调试 移动端调试工具vconsole安装Git地址:https://github.com/WechatFE ...

  3. 记录下vue keep-alive IOS下无法保存滚动scroll位置的问题

    最近 做的项目,遇到了一点小麻烦,就是我一个页面A页面是加载 列表数据 ,B页面是展示详细信息的.A进去B时,缓存A页面. 效果 做出来 后,缓存是缓存数据 了,但是当我A页面的列表数据 好多,要滚动 ...

  4. Cocos Creator (JavaScript手机类型判断)

    手机类型判断 var BrowserInfo = { userAgent: navigator.userAgent.toLowerCase() isAndroid: Boolean(navigator ...

  5. Guava工具类学习

    目录 一.介绍 二.Optional类 1.定义 2.java8自带Optional 3.使用 三.Preconditions类 1.定义 2.使用 四.Ordering类 1.定义 2.使用 五.R ...

  6. Jmeter测试技巧

    最近在用Jmeter做接口测试,使用中整理了一些组件的使用技巧. 一. 用户定义的变量 都是全局变量,无论是否在某个线程组或请求内,都是采用最新赋值的内容 二. 固定定时器 在单个请求内是让本请求线程 ...

  7. Centos7 安装配置 Rabbitmq Cluster

    Rabbitmq介绍 RabbitMQ是由 LShift 提供的一个 Advanced Message Queuing Protocol (AMQP) 的开源实现,由以高性能.健壮以及可伸缩性出名的 ...

  8. C++ OpenSSL 之五:生成P12文件

    1.等同于使用: openssl pkcs12 -export -inkey "key_path" -in "pem_path" -out "save ...

  9. mongo find 时间条件过滤

    db.order.find({"order_time":{"$gte": new Date("Tue Jan 01 2017 00:00:00 GMT ...

  10. Alipay支付宝支付 报错 invalid [default store dir]: /tmp/

    1.如果使用支付宝sdk,首先lotusphp_runtime 文件也要一起使用  支付宝现在的php sdk中有lotus框架可以和aop文件. 2.保证AopSdk.php文件中的方法可以走到这个 ...