Non-boring sequences(启发式分治)
题意:一个序列被称作是不无聊的,当且仅当,任意一个连续子区间,存在一个数字只出现了一次,问给定序列是否是不无聊的。
思路:每次找到一个只出现了一次的点,其位置的pos,那么继续分治[L,pos-1],[pos1+1,R];为了保证分治的复杂度,每次的复杂度应该是拆开后较小的哪个。
可以类比启发式合并。 所以我们应该从两头想中间找pos。
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
int a[maxn],pre[maxn],lat[maxn]; map<int,int>mp;
bool check(int L,int R)
{
if(L>=R) return true;
int l=L,r=R;
rep(i,L,R){
if(i&){
if(pre[l]<L&&lat[l]>R)
return check(L,l-)&&check(l+,R);
l++;
}
else {
if(pre[r]<L&&lat[r]>R)
return check(L,r-)&&check(r+,R);
r--;
}
}
return false;
}
int main()
{
int T,N;
scanf("%d",&T);
while(T--){
mp.clear();
scanf("%d",&N);
rep(i,,N) scanf("%d",&a[i]);
rep(i,,N){
lat[mp[a[i]]]=i;
pre[i]=mp[a[i]];
mp[a[i]]=i;
}
rep(i,,N) lat[mp[a[i]]]=N+;
if(check(,N)) puts("non-boring");
else puts("boring");
}
return ;
}
Non-boring sequences(启发式分治)的更多相关文章
- BZOJ 4059: [Cerc2012]Non-boring sequences(启发式分治)
传送门 解题思路 首先可以想到要预处理一个\(nxt_i\)和\(pre_i\),表示前后与当前位置权值相同的节点,那么这样可以迅速算出某个点在某段区间是否出现多次.然后这样的话就考虑分治,对于\([ ...
- HDU6701:Make Rounddog Happy(启发式分治)
题意:给定数组a[],求区间个数,满足区间的数各不同,而且满足maxval-len<=K: 思路:一看就可以分治做,对于当前的区间,从max位置分治. 对于这一层,需要高效的统计答案,那么对短的 ...
- Removing Stones(2019年牛客多校第三场G+启发式分治)
目录 题目链接 题意 思路 代码 题目链接 传送门 题意 初始时有\(n\)堆石子,每堆石子的石子个数为\(a_i\),然后进行游戏. 游戏规则为你可以选择任意两堆石子,然后从这两堆中移除一个石子,最 ...
- Make Rounddog Happy(2019年杭电多校第十场1011+HDU6701+启发式分治)
目录 题目链接 题意 思路 代码 题目链接 传送门 题意 求有多少个子区间满足\(a_l,a_{l+1},\dots,a_r\)均不相同且\(max(a_l,a_{l+1},\dots,a_r)-(r ...
- 2019牛客暑期多校训练营(第三场)G: Removing Stones(启发式分治)
题意:给定N,表示N堆石子,每堆石子数为a[],问多少个区间,可以满足“石子总和若为偶数,那么可以两两取来自不同堆的石子,直到取完: 如果为奇数,那么排除其中一个,然后可以两两取来自不同堆的石子,直到 ...
- 启发式分治:2019牛客多校第三场 G题 Removing Stones
问题可以转换为求有多少个区间数字的总和除2向下取整大于等于最大值.或者解释为有多少个区间数字的总和大于等于最大值的两倍(但是若区间数字总和为奇数,需要算作减1) 启发式分治: 首先按最大值位置分治,遍 ...
- BZOJ 4059 [Cerc2012]Non-boring sequences(启发式分治)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4059 [题目大意] 一个序列被称为是不无聊的,仅当它的每个连续子序列存在一个独一无二的 ...
- UVA1608-Non-boring sequences(分治)
Problem UVA1608-Non-boring sequences Accept: 227 Submit: 2541Time Limit: 3000 mSec Problem Descript ...
- 【题解】P4755 Beautiful Pair(启发式合并的思路+分治=启发式分治)
[题解]P4755 Beautiful Pair upd: 之前一个first second烦了,现在AC了 由于之前是直接抄std写的,所以没有什么心得体会,今天自己写写发现 不知道为啥\(90\) ...
随机推荐
- grpc Unary模式下客户端创建insecure channel的主要流程
(原创)C/C/1.25.0-dev grpc-c/8.0.0, 使用的例子是自带的例子GreeterClient grpc Unary模式下客户端创建insecure channel的主要流程 gr ...
- 0-python变量及基本数据类型
目录 1.变量2.字符串3.布尔类型4.整数5.浮点数6.日期 1.变量 1.1.变量的定义 - 类似于标签 1.2.变量的命名规则 - (强制)变量名只能包含数字.字母.下划线 - (强制)不能以数 ...
- 文件包含lfi
CG-CTF web(文件包含漏洞) 参考链接:https://blog.csdn.net/qq_34072526/article/details/89431431 php://filter 的使用: ...
- Cpp_Primer_4th_Edition-source-code
Cpp_Primer_4th_Edition-source-code 根据书上的去找,官网已经找不到了,毕竟第6版都已经出来了.不过有的朋友用的还是第4版,我的纸质书是第5版,pdf是第4版,都有在看 ...
- K8s-yaml的使用及命令
YAML配置文件管理对象 对象管理: # 创建deployment资源 kubectl create -f nginx-deployment.yaml # 查看deployment kubectl g ...
- Spring-Cloud之Eureka注册与发现-2
一.Eureka是Netflix开发的服务发现框架,本身是一个基于REST的服务,主要用于定位运行在AWS域中的中间层服务,以达到负载均衡和中间层服务故障转移的目的.SpringCloud将它集成在其 ...
- js获取对象的属性个数
for (var i = 0; i < dt.length; i++) { if (Object.keys(dt[i]).length <= 1) { dt.splice(i, 1); i ...
- 玩转dockerfile
镜像的缓存特性 Docker 会缓存已有镜像的镜像层,构建新镜像时,如果某镜像层已经存在,就直接使用,无需重新创建. 举例说明.在前面的 Dockerfile 中添加一点新内容,往镜像中复制一个文件: ...
- springboot自定义消息转换器HttpMessageConverter Spring Boot - 使用Gson替换Jackson
Jackson一直是springframework默认的json库,从4.1开始,springframework支持通过配置GsonHttpMessageConverter的方式使用Gson. 在典型 ...
- 【开发工具】- Java开发必知工具
压力测试工具_JMeter 作用 1.能够对HTTP和FTP服务器进行压力和性能测试, 也可以对任何数据库进行同样的测试(通过JDBC). 2.完全的可移植性和100% 纯java. 3.完全 Swi ...