三、假设你希望以1/2的概率输出0与 1。你可以自由使用一个输出0或1的过程 BIASED-RANDOM。它以某概率 p 输出1,概率 1-p 输出0,其中 0<p<1 ,但是 p 的值未知。请给出一个利用 BIASED-RANDOM 作为子程序的算法,返回一个无偏的结果,能以概率1/2返回0,以概率 1/2 返回1。作为 p 的函数,你的算法的期望运行时间是多少?

文心一言:

可以使用贝叶斯公式来计算无偏的结果。假设我们进行了n次试验,其中BIASED-RANDOM以概率p输出1,以概率1-p输出0。设N0为输出0的次数,N1为输出1的次数,则有N0+N1=n。根据贝叶斯公式,可以得到:

p(N0, N1|p) = p(N0, N1, p) / p(p)

其中,p(N0, N1, p)表示在n次试验中,N0次试验输出0,N1次试验输出1,且BIASED-RANDOM以概率p输出1的概率。p(p)表示概率p的概率密度函数,可以在已知p的范围的情况下计算得到。

由于要求无偏的结果,因此N0和N1的概率分布应该是相等的。因此,可以取p(N0, N1|p) = 1 / (n+1),并将此值作为算法的输出结果。

该算法的期望运行时间取决于n的大小。在最坏情况下,即n非常大时,每次试验都需要很长时间才能得到结果。因此,该算法的期望运行时间可能会非常大。但是,当n比较小的时候,该算法的运行时间是O(1)的。

讯飞星火:

我们可以使用 BIASED-RANDOM 作为子过程,来生成一个无偏的随机数。具体来说,我们可以利用 BIASED-RANDOM 生成两个独立的随机数 x 和 y,然后根据以下条件计算出一个新的随机数 z:

  • 如果 x 输出了 1,y 输出了 0,则 z 输出 0;

  • 如果 x 输出了 0,y 输出了 1,则 z 输出 1;

  • 否则,z 输出 x*y。

这个新的随机数 z 就是我们需要的结果。由于 BIASED-RANDOM 是无偏的,因此这个新随机数 z 也是无偏的。同时,由于 BIASED-RANDOM 只依赖于 p 和 x、y 两个独立的过程,因此它的期望运行时间是 O(p)。

现在我们来计算一下这个新随机数 z 的期望值。由于 BIASED-RANDOM 是一个二元过程,因此它的期望值为 pp+(1-p)(1-p)=2p^2-2p+1。而根据上面的条件,z 的期望值为:

E(z) = p(xy) + (1-p)(x(1-y)) + (1-p)(y(1-x))

= pxy + (1-p)x + (1-p)y

= pxy + px + py

= p(xy + x + y)

= p*z

因此,我们得到了一个新的期望运行时间为 O(p),并且能够以概率 1/2 返回 0、以概率 1/2 返回 1 的无偏随机数生成函数。

华为盘古:

360智脑:

可以使用Bernoulli-Monte Carlo方法来实现。具体来说,可以设置BIASED-RANDOM过程的初始值为0,并不断迭代直到达到所需的输出结果。在每个迭代步骤中,将BIASED-RANDOM过程的输出乘以p并将结果加上 BIASED-RANDOM过程的当前值。重复此操作直到最终结果满足要求为止。这个算法的预期时间复杂度取决于BIASED-RANDOM过程的期望时间复杂度。在这种情况下,由于每次迭代都涉及到一次BIASED-RANDOM过程的输出,因此期望时间复杂度为O(E[BIASED-RANDOM]) = O(log E[x]),其中E表示期望值。由于 BIASED-RANDOM 是一个二项分布,其期望值可以通过二项分布的性质来计算。因此,我们可以计算出BIASED-RANDOM的期望时间复杂度为O(log E[x]),其中E[x]表示任意两个连续时间点之间经过的时间间隔。

chatglm:

算法如下:

1.调用 BIASED-RANDOM 过程,得到概率 p 的值。

2.如果 p > 0.5,则返回 0。

3.如果 p < 0.5,则返回 1。

这种算法是无偏的,因为它不考虑 BIASED-RANDOM 过程的输出,而是根据 p 的值随机选择返回 0 或 1。

对于每个 p 的值,算法都需要调用 BIASED-RANDOM 过程一次,因此时间复杂度为 O(1)。

由于 BIASED-RANDOM 过程的输出是随机的,因此算法的期望运行时间与 p 的值有关。当 p 接近 0 或 1 时,算法的期望运行时间会相应缩短,因为在这种情况下,BIASED-RANDOM 过程的输出更可能接近 0 或 1。

chatgpt:

为了以 1/2 的概率输出 0 和 1,我们可以利用 BIASED-RANDOM 过程来实现。具体算法如下:

1.调用 BIASED-RANDOM 过程两次;

2.如果两次结果都是相同的,则返回这个结果;

3.否则,重复步骤 1。

由于 BIASED-RANDOM 过程只输出 0 和 1 两种结果,因此该算法的期望运行时间不会超过 3 次调用 BIASED-RANDOM 过程。接下来,我们分别考虑前两次调用 BIASED-RANDOM 过程的情况:

1.如果第一次和第二次调用的结果都是 0 或者都是 1,则直接返回这个结果即可;

2.如果第一次和第二次调用的结果不同,则需要再次调用 BIASED-RANDOM 过程,重复上述步骤。

由于 BIASED-RANDOM 过程的输出概率为 p 和 1-p,因此两次调用结果相同的概率为 p^2 + (1-p)^2,结果不同的概率为 2p(1-p)。因此,需要多次调用 BIASED-RANDOM 过程的概率为 2p(1-p),即:

P(需要多次调用) = 2p(1-p)

第一次和第二次调用结果相同的概率为 p^2 + (1-p)^2,即:

P(第一次和第二次结果相同) = p^2 + (1-p)^2

因此,算法的期望运行时间为:

E(T) = P(需要多次调用) * [2 + E(T)] + P(第一次和第二次结果相同)

展开得到:

E(T) = 2p(1-p)*[2+E(T)] + (p^2 + (1-p)^2)

整理可得:

E(T) = 2 + 2p - 4p^2

因此,该算法的期望运行时间为 O(1),只需要进行常数次 BIASED-RANDOM 过程调用即可得到无偏结果。

文心一言 VS 讯飞星火 VS chatgpt (28)-- 算法导论5.1 3题的更多相关文章

  1. 【对比】文心一言对飚ChatGPT实操对比体验

    前言 缘由 百度[文心一言]体验申请通过 本狗中午干饭时,天降短信,告知可以体验文心一言,苦等一个月的实操终于到来.心中这好奇的对比心理油然而生,到底是老美的[ChatGPT]厉害,还是咱度娘的[文心 ...

  2. 【个人首测】百度文心一言 VS ChatGPT GPT-4

    昨天我写了一篇文章GPT-4牛是牛,但这几天先别急,文中我测试了用GPT-4回答ChatGPT 3.5 和 Notion AI的问题,大家期待的图片输入也没有出现. 昨天下午百度发布了文心一言,对标C ...

  3. 文心一言,通营销之学,成一家之言,百度人工智能AI大数据模型文心一言Python3.10接入

    "文心"取自<文心雕龙>一书的开篇,作者刘勰在书中引述了一个古代典故:春秋时期,鲁国有一位名叫孔文子的大夫,他在学问上非常有造诣,但是他的儿子却不学无术,孔文子非常痛心 ...

  4. 获取了文心一言的内测及与其ChatGPT、GPT-4 对比结果

    百度在3月16日召开了关于文心一言(知识增强大语言模型)的发布会,但是会上并没现场展示demo.如果要测试的文心一言 也要获取邀请码,才能进行测试的. 我这边通过预约得到了邀请码,大概是在3月17日晚 ...

  5. 百度生成式AI产品文心一言邀你体验AI创作新奇迹:百度CEO李彦宏详细透露三大产业将会带来机遇(文末附文心一言个人用户体验测试邀请码获取方法,亲测有效)

    目录 中国版ChatGPT上线发布 强大中文理解能力 智能文学创作.商业文案创作 图片.视频智能生成 中国生成式AI三大产业机会 新型云计算公司 行业模型精调公司 应用服务提供商 总结 获取文心一言邀 ...

  6. 阿里版ChatGPT:通义千问pk文心一言

    随着 ChatGPT 热潮卷起来,百度发布了文心一言.Google 发布了 Bard,「阿里云」官方终于也宣布了,旗下的 AI 大模型"通义千问"正式开启测试! 申请地址:http ...

  7. 基于讯飞语音API应用开发之——离线词典构建

    最近实习在做一个跟语音相关的项目,就在度娘上搜索了很多关于语音的API,顺藤摸瓜找到了科大讯飞,虽然度娘自家也有语音识别.语义理解这块,但感觉应该不是很好用,毕竟之前用过百度地图的API,有问题也找不 ...

  8. android用讯飞实现TTS语音合成 实现中文版

    Android系统从1.6版本开始就支持TTS(Text-To-Speech),即语音合成.但是android系统默认的TTS引擎:Pic TTS不支持中文.所以我们得安装自己的TTS引擎和语音包. ...

  9. android讯飞语音开发常遇到的问题

    场景:android项目中共使用了3个语音组件:在线语音听写.离线语音合成.离线语音识别 11208:遇到这个错误,授权应用失败,先检查装机量(3台测试权限),以及appid的申请时间(35天期限), ...

  10. 初探机器学习之使用讯飞TTS服务实现在线语音合成

    最近在调研使用各个云平台提供的AI服务,有个语音合成的需求因此就使用了一下科大讯飞的TTS服务,也用.NET Core写了一个小示例,下面就是这个小示例及其相关背景知识的介绍. 一.什么是语音合成(T ...

随机推荐

  1. SICP:求值和环境模型(Python实现)

    绪论 我们在第一章引进复合过程时,采用了求值的代换模型定义了将过程应用于实参(arguments)的意义: 将一个复合过程应用于一些实参,也就意味着用实参替换过程体里对应的形参(formal para ...

  2. CSAPP-Data Lab

    gcc -O1 -Wall -m32 -lm -o btest bits.c btest.c decl.c tests.c In file included from btest.c:16:0: /u ...

  3. 非常小的一个东西,Spring依赖注入Bean类型的8种情况

    大家好,我是三友~~ 今天来讲一个可能看似没有用但是实际又有点用的一个小东西,那就是@Autowired支持注入哪些Bean的类型. 为啥要讲这个呢? 故事说起来可能就比较长了. 不过长话可以短说,仅 ...

  4. python3常用模块和方法

    1.使用索引反转字符串 str="hello" print(str[::-1]) 2.zip函数获取可迭代对象,将它们聚合到一个元组中,然后返回结果.语法是zip(*iterabl ...

  5. 保持唯一性,请停止使用【python3 内置hash() 函数】

    问题: 如图,用hash() 筛重时竟然出现了重复. 如下图: hash字符串时,同一窗口的是一致的,不同窗口结果竟然不同. 原因: python的字符串hash算法并不是直接遍历字符串每个字符去计算 ...

  6. 移动端网页--better-scroll容易采坑合集

    移动端网页--better-scroll容易采坑合集 一.better-scroll源码bug,浏览器需要刷新一次才能正常滑动 在new BScroll时,在options中加入 mouseWheel ...

  7. 如何做到API文档规范化

    定义一个好的 API 文档是优秀研发人员的标准配置,在执行接口测试之前,测试人员一定会先拿到开发给予的接口文档. 测试人员可以根据这个文档编写接口测试用例,优秀的文档可以区分好的用户体验和坏的用户体验 ...

  8. 在Kubernetes上安装Netdata的方法

    介绍 Netdata可用于监视kubernetes集群并显示有关集群的信息,包括节点内存使用率.CPU.网络等,简单的说,Netdata仪表板可让您全面了解Kubernetes集群,包括在每个节点上运 ...

  9. LeeCode链表问题(二)

    LeeCode 19: 删除链表的倒数第n个节点 题目描述: 给你一个链表,删除链表的倒数第 n 个节点,并返回链表的头节点. 标签:链表,双指针 时间复杂度:O(N) 建立模型: 定义虚拟头节点,使 ...

  10. Dapr和Rainbond集成,实现云原生BaaS和模块化微服务开发

    背景 Dapr 是一个开源的分布式应用运行时,帮助开发者构建松耦合的分布式应用程序,具有良好的可扩展性和可维护性.Rainbond 是一款企业级的云原生应用管理平台,提供了丰富的功能和工具,方便开发者 ...