教你如何进行Prometheus 分片自动缩放
本文分享自华为云社区《使用 Prometheus-Operator 进行 Prometheus + Keda 分片自动缩放》,作者: Kubeservice@董江。
垂直缩放与水平缩放
Prometheus已经成为云原生时代事实上的监控工具。从监控小型花园的实例到企业中大规模的监控,Prometheus 都可以处理工作负载!但并非没有挑战…
在拥有数百个团队的大型组织中,每秒获取数百万个指标是很常见的。人们可以维护一个 Prometheus 实例,并通过投入资金来解决扩展问题:只需获得一个更大的节点即可。好吧,如果你愿意付钱,那就去吧!但是节点价格的增长速度通常高于其大小,并且管理大型和小型 Prometheus 实例之间还有另一个很大的区别:WAL 重播!
Prometheus 保留一个包含最新抓取数据的内存数据库。为了避免在可能的重新启动期间丢失数据,Prometheus 在磁盘上保留了预写日志 (WAL)。当 Prometheus 重启时,它会将 WAL 重新加载到内存中,这样最新抓取的数据就又可用了,这个操作就是我们所说的 WAL Replay。
在 WAL 重放期间,Prometheus 完全无法进行查询,也无法抓取任何目标,因此我们希望尽快完成此操作!这就是巨大的 Prometheus 实例成为问题的时候。当将数百 GiB 的数据重放到内存中时,此操作很容易需要 20 到 30 分钟,在更极端的情况下甚至需要几个小时。如果您决定保留单个 Prometheus 实例,WAL Replay 操作可能会导致监控系统出现长时间停机。
避免大型 Prometheus 实例的一种常见策略是在多个 Prometheus 之间分片抓取目标。由于每个 Prometheus 都会抓取较少量的指标,因此它们会小得多,并且 WAL Replay 不会像以前那样成为问题。为了仍然能够拥有集中式查询体验,可以将指标转发到另一个工具,例如 Thanos、Cortex 或云提供商,这些工具也能够扩展 Prometheus 查询功能。

整个时间内负载不均匀
我们已经通过使用分片而不是垂直扩展 Prometheus 取得了一些重大进展,但是当暴露的指标数量全天增加和减少时会发生什么?对于每天从数百个节点扩展到数千个节点(反之亦然)的 Kubernetes 集群来说,这是一种非常常见的情况。在决定普罗米修斯碎片的数量时,我们如何找到成本/效益比的最佳点?
您可以每天手动微调集群中的分片数量,但有更智能的方法来完成此任务。在这篇博文中,我将重点介绍 Horizontal Pod Autoscaler 策略,该策略是最近通过 Prometheus-Operator v0.71.0 版本实现的。

使用 Keda 自动缩放 Prometheus 碎片
设置
使用 Kubernetes Scale API 的任何类型的 Horizontal Pod Autoscaler,但出于演示目的,将使用Keda,它支持多种扩展策略。
让我们从创建一个小型集群开始,我建议使用KinD或Minikube:
$ kind create cluster
Creating cluster "kind" ...
✓ Ensuring node image (kindest/node:v1.27.1)
✓ Preparing nodes
✓ Writing configuration
✓ Starting control-plane ️
✓ Installing CNI
✓ Installing StorageClass
Set kubectl context to "kind-kind"
You can now use your cluster with: kubectl cluster-info --context kind-kind Have a nice day!
现在让我们安装 Keda:
$ helm repo add kedacore https://kedacore.github.io/charts
$ helm repo update
$ helm install keda kedacore/keda --namespace keda --create-namespace
$ watch kubectl get pods -n keda
一旦所有 Pod 都达到该Running状态,我们就可以继续!下一步是安装 Prometheus Operator:
$ git clone https://github.com/prometheus-operator/prometheus-operator
$ cd prometheus-operator
$ kubectl apply --server-side -f bundle.yaml
部署 Prometheus 和示例应用程序
好了,初始设置完成了。让我们部署一些公开一些指标的应用程序!为了演示目的,让我们部署一个 Alertmanager:
---
apiVersion: monitoring.coreos.com/v1
kind: Alertmanager
metadata:
name: main
namespace: monitoring
spec:
image: quay.io/prometheus/alertmanager:v0.26.0
podMetadata:
labels:
app.kubernetes.io/instance: main
app.kubernetes.io/name: alertmanager
replicas: 1
serviceAccountName: alertmanager-main
---
apiVersion: v1
kind: Service
metadata:
name: alertmanager-main
namespace: monitoring
labels:
app.kubernetes.io/instance: main
app.kubernetes.io/name: alertmanager
spec:
ports:
- name: web
port: 9093
targetPort: web
- name: reloader-web
port: 8080
targetPort: reloader-web
selector:
app.kubernetes.io/instance: main
app.kubernetes.io/name: alertmanager
---
apiVersion: v1
automountServiceAccountToken: false
kind: ServiceAccount
metadata:
name: alertmanager-main
namespace: monitoring
---
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: alertmanager-main
namespace: monitoring
spec:
endpoints:
- interval: 30s
port: web
- interval: 30s
port: reloader-web
selector:
matchLabels:
app.kubernetes.io/instance: main
app.kubernetes.io/name: alertmanager
还有一个 Prometheus 负责抓取这个 Alertmanager(以及之后部署的更多内容)。我们希望根据每秒抓取的样本进行扩展,因此我们将配置 Prometheus 来抓取自身
apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
name: k8s
spec:
image: quay.io/prometheus/prometheus:v2.48.1
podMetadata:
labels:
app.kubernetes.io/instance: k8s
app.kubernetes.io/name: prometheus
shards: 1
serviceAccountName: prometheus-k8s
serviceMonitorSelector: {}
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: prometheus-k8s
rules:
- apiGroups:
- ""
resources:
- configmaps
verbs:
- get
- apiGroups:
- ""
resources:
- services
- endpoints
- pods
verbs:
- get
- list
- watch
- apiGroups:
- extensions
resources:
- ingresses
verbs:
- get
- list
- watch
- apiGroups:
- networking.k8s.io
resources:
- ingresses
verbs:
- get
- list
- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: prometheus-k8s
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: prometheus-k8s
subjects:
- kind: ServiceAccount
name: prometheus-k8s
namespace: default
---
apiVersion: v1
kind: Service
metadata:
name: prometheus-k8s
labels:
app.kubernetes.io/instance: k8s
app.kubernetes.io/name: prometheus
spec:
ports:
- name: web
port: 9090
targetPort: web
- name: reloader-web
port: 8080
targetPort: reloader-web
selector:
app.kubernetes.io/instance: k8s
app.kubernetes.io/name: prometheus
---
apiVersion: v1
automountServiceAccountToken: true
kind: ServiceAccount
metadata:
name: prometheus-k8s
---
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: prometheus-k8s
spec:
endpoints:
- interval: 30s
port: web
- interval: 30s
port: reloader-web
selector:
matchLabels:
app.kubernetes.io/instance: k8s
app.kubernetes.io/name: prometheus
部署完所有内容后,我们可以通过暴露其 UI 来验证 Prometheus 的表现:
$ kubectl port-forward prometheus-k8s-0 9090
如果我们查询指标sum(rate(prometheus_tsdb_head_samples_appended_total[2m])),
我们会注意到我们稳定在每秒摄取 40~50 个样本左右。

配置 Keda 来扩展/缩小 Prometheus
Keda 的自动缩放对象是通过ScaledObject CRD配置的。 ScaledObjects 有大量不同的缩放器,但在这里我们将使用Prometheus 缩放器来缩放 Prometheus 本身。
apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
name: prometheus
spec:
scaleTargetRef:
apiVersion: monitoring.coreos.com/v1
kind: Prometheus
name: k8s
minReplicaCount: 1
maxReplicaCount: 100
fallback:
failureThreshold: 5
replicas: 10
triggers:
- type: prometheus
metadata:
serverAddress: http://prometheus-k8s.svc.default.cluster.local:9090
# Ingested samples per second across all shards
query: sum(rate(prometheus_tsdb_head_samples_appended_total[2m]))
# We'll scale up/down on every 200 samples ingested per second
threshold: '200'
要验证 ScaledObject 是否按预期工作,请运行:
$ kubectl get scaledobject prometheus
你应该看到这一点STATUS并且ACTIVE两者都应该是True。
触发扩缩容
现在让我们开始有趣的部分,首先增加 Alertmanager Pod 的数量:
$ kubectl patch alertmanager main -p '{"spec": {"replicas": 20}}' --type merge
在检查 Prometheus UI 时,我们会注意到摄取的样本快速增加:

如果我们检查 Prometheus Pod 的数量,我们会注意到正在部署新的分片:
$ kubectl get pods -l app.kubernetes.io/name=prometheus
NAME READY STATUS RESTARTS AGE
prometheus-k8s-0 2/2 Running 0 21m
prometheus-k8s-shard-1-0 2/2 Running 0 2m54s
prometheus-k8s-shard-2-0 2/2 Running 0 2m24s
prometheus-k8s-shard-3-0 1/2 Running 0 54s
我们还验证一下,如果负载减少,Prometheus Pod 是否会缩小规模
$ kubectl patch alertmanager main -p '{"spec": {"replicas": 1}}' --type merge
几分钟后,分片将返回较少数量的摄取样本,Keda 应再次调整分片数量:
$ kubectl get pods -l app.kubernetes.io/name=prometheus
NAME READY STATUS RESTARTS AGE
prometheus-k8s-0 2/2 Running 0 30m
其他
- https://www.arthursens.dev/posts/prometheus-shard-autoscaling
- https://keda.sh/docs/2.13/scalers/prometheus/#integrating-cloud-offerings
教你如何进行Prometheus 分片自动缩放的更多相关文章
- 通过Dapr实现一个简单的基于.net的微服务电商系统(十一)——一步一步教你如何撸Dapr之自动扩/缩容
上一篇我们讲到了dapr提供的bindings,通过绑定可以让我们的程序轻装上阵,在极端情况下几乎不需要集成任何sdk,仅需要通过httpclient+text.json即可完成对外部组件的调用,这样 ...
- JS自动缩放页面图片
/** * 缩略图 * * @param bool isScaling 是否缩放 * @param int width 宽度 * @param int height 高度 * @param strin ...
- Windows窗口自动缩放机制
通过自动缩放功能,能使在一个计算机上设计的界面在另一个具有不同分辨率或系统字体的计算机上能正常显示.这样窗体及其控件就能通过智能化调整大小以保障在本地电脑和用户电脑上保持一致. 自动缩放的必要性 如果 ...
- Android drawable的自动缩放
今天在写程序时发现,一张图片被自动放大了,后来发现,这张图片放在了drawable-zh文件夹下,这个文件夹没有指定屏幕密度!于是将drawable-zh改为drawable-zh-nodpi,问题解 ...
- Android代码中动态设置图片的大小(自动缩放),位置
项目中需要用到在代码中动态调整图片的位置和设置图片大小,能自动缩放图片,用ImageView控件,具体做法如下: 1.布局文件 <RelativeLayout xmlns:android=&qu ...
- 百度地图API 级别自动缩放
今天做一个基于百度地图API的小项目 查了很长时间apid都没有找到地图呈现出来的时候地图按坐标的多少自动缩放显示的等级比例,特此记录笔记!var points = [point1, point2,p ...
- Android Oreo 8.0 新特性实战 Autosizing TextView --自动缩放TextView
Android Oreo 8.0 新特性实战 Autosizing TextView --自动缩放TextView 8.0出来很久了,这个新特性已经用了很久了,但是一直没有亲自去试试.这几天新的需求来 ...
- arcgis for js 根据多边形自动缩放
交代背景:多边形已经渲染在图层上,然后根据多边形自动缩放值合适的大小: 思路:获取图层信息,获取图层中的几何信息,获取图形范围信息,在地图上设置范围:(下面的方法有封装)记一下思路就好 var pol ...
- html 网页背景图片根据屏幕大小CSS自动缩放
https://blog.csdn.net/coslay/article/details/47109281 腾讯微博和QQ空间的登录背景图片是根据访客的屏幕大小自动缩放的,但是好像是用JQuery代码 ...
- pageresponse.min.js自动缩放页面改写
/* * 名称 :移动端响应式框架 * 作者 :白树 http://peunzhang.cnblogs.com * 版本 :v2.1 * 日期 :2015.10.13 * 兼容 :ios 5+.and ...
随机推荐
- manjaro/archLinux出现什么的签名未知信任的时候
sudo pacman -S archlinuxcn-keyring 在进行该做的就可以了 出现这种状况的原因是没有规范的更新系统!
- debian卡顿,造成用户注销现象的原因以及解决方法
现象:当时电脑正在运行,宝塔面板安装初始化应用,一个浏览器,一个虚拟机 解决方法:目前还不清楚--是不是负载过大?好奇怪!
- Shell脚本自动下载FTP文件上传到S3
1. shell脚本下载 #!/bin/bash #用户名 USER=xxx #密码 PASSWORD=xxx #下载文件临时目录 SRCTDIR=/approveform/uat/tempin #S ...
- JSF之Action 与ActionListener的区别
事件 检验 参数 事件产生 页面跳转 Action 有 无参数,不传入当前控件,有返回值 当铵钮被单击时产生事件.提交表单 返回页面---根据配置文件跳转 ActionLis ...
- HeaderedContentControl实现左右对称
在我们使用TextBlock却想给前面添加固定字段的时候,发现TextBlock没有Header属性, 这个时候我们可以用到HeaderedContentControl 然而,默认情况下Headere ...
- CA:用于移动端的高效坐标注意力机制 | CVPR 2021
论文提出新颖的轻量级通道注意力机制coordinate attention,能够同时考虑通道间关系以及长距离的位置信息.通过实验发现,coordinate attention可有效地提升模型的准确率, ...
- KingbaseES错误unsupported for database link处理
KingbaseES使用dblink查询报错:unsupported for database link 适用于: KingbaseES所有版本. 问题现象: KingbaseES创建kingbase ...
- Python 基于 xlsxwriter 实现百万数据导出 excel
追加导出 + 自动切换 sheet ️ excel 中的每个 sheet 最多只能保存 1048576 行数据 # 获取项目的根路径 rootPath curPath = os.path.abspat ...
- 基于rk3588----i2c驱动框架学习(2)-总线驱动 algorithm 分析
rk3588 i2c algorithm 分析 来了来了,上次分析完i2c的驱动框架 今天我们就看看i2c的algorithm是如何实现的 static const struct i2c_algori ...
- 2024-03-30:用go语言,集团里有 n 名员工,他们可以完成各种各样的工作创造利润, 第 i 种工作会产生 profit[i] 的利润,它要求 group[i] 名成员共同参与, 如果成员参与
2024-03-30:用go语言,集团里有 n 名员工,他们可以完成各种各样的工作创造利润, 第 i 种工作会产生 profit[i] 的利润,它要求 group[i] 名成员共同参与, 如果成员参与 ...