摘要:实践解析如何利用SarkSQL高并发进行读取数据库和存储数据到数据库。

本文分享自华为云社区《SarkSQL高并发读取数据库和存储数据到数据库》,作者:Copy工程师 。

1. SparkSql 高并发读取数据库

SparkSql连接数据库读取数据给了三个API:

//Construct a DataFrame representing the database table accessible via JDBC URL url named table and connection properties.
Dataset<Row> jdbc(String url, String table, java.util.Properties properties)
//Construct a DataFrame representing the database table accessible via JDBC URL url named table using connection properties.
Dataset<Row> jdbc(String url, String table, String[] predicates, java.util.Properties connectionProperties)
//Construct a DataFrame representing the database table accessible via JDBC URL url named table.
Dataset<Row> jdbc(String url, String table, String columnName, long lowerBound, long upperBound, int numPartitions, java.util.Properties connectionProperties)

三个API介绍:

1. 单个分区,单个task执行,无并发

遇到数据量很大的表,抽取速度慢。

实例:

SparkSession sparkSession = SparkSession.builder().appName("SPARK_FENGDING_TASK1").master("local").config("spark.testing.memory", 471859200).getOrCreate();
// 配置连接属性
Properties dbProps = new Properties();
dbProps.put("user","user");
dbProps.put("password","pwd");
dbProps.put("driver","oracle.jdbc.driver.OracleDriver");
// 连接数据库 获取数据 要使用自己的数据库连接串
Dataset<Row> tableDf = sparkSession.read().jdbc("jdbc:oracle:thin:@IP:1521:DEMO", "TABLE_DEMO", dbProps);
// 返回1
tableDf.rdd().getPartitions();

该API的并发数为1,单分区,不管你留给该任务节点多少资源,都只有一个task执行任务

2. 任意字段分区

该API是第二个API,根据设置的分层条件设置并发度:

def jdbc(
url: String,
table: String,
predicates: Array[String], #这个是分层的条件,一个数组
connectionProperties: Properties): DataFrame = {
val parts: Array[Partition] = predicates.zipWithIndex.map { case (part, i) =>
JDBCPartition(part, i) : Partition
}
jdbc(url, table, parts, connectionProperties)
}

实例:

// 设置分区条件 通过入库时间 把 10月和11月 的数据 分两个分区
String[] patitions = {"rksj >= '1569859200' and rksj < '1572537600'","rksj >= '1572537600' and rksj < '1575129600'"};
// 根据StudentId 分15个分区,就会有15个task抽取数据
Dataset<Row> tableDf3 = sparkSession.read().jdbc("jdbc:oracle:thin:@IP:1521:DEMO", "TABLE_DEMO",patitions,dbProps);
// 返回2
tableDf3.rdd().getPartitions();

该API操作相对自由,就是设置分区条件麻烦一点。

3. 根据Long类型字段分区

该API是第三个API,根据设置的分区数并发抽取数据:

def jdbc(
url: String,
table: String,
columnName: String, # 根据该字段分区,需要为整形,比如id等
lowerBound: Long, # 分区的下界
upperBound: Long, # 分区的上界
numPartitions: Int, # 分区的个数
connectionProperties: Properties): DataFrame = {
val partitioning = JDBCPartitioningInfo(columnName, lowerBound, upperBound, numPartitions)
val parts = JDBCRelation.columnPartition(partitioning)
jdbc(url, table, parts, connectionProperties)
}

实例:

// 根据StudentId 分15个分区,就会有15个task抽取数据
Dataset<Row> tableDf2 = sparkSession.read().jdbc("jdbc:oracle:thin:@IP:1521:DEMO", "TABLE_DEMO", "studentId",0,1500,15,dbProps);
// 返回10
tableDf2.rdd().getPartitions();

该操作根据分区数设置并发度,缺点是只能用于Long类型字段。

2. 存储数据到数据库

存储数据库API给了Class DataFrameWriter<T>类,该类有存储到文本,Hive,数据库的API。这里只说数据库的API,提一句,如果保存到Text格式,只支持保存一列。。。就很难受。

实例:

有三种写法

// 第一张写法,指定format类型,使用save方法存储数据库
jdbcDF.write()
.format("jdbc")
.option("url", "jdbc:postgresql:dbserver")
.option("dbtable", "schema.tablename")
.option("user", "username")
.option("password", "password")
.save();
// 第二种写法 使用jdbc写入数据库
jdbcDF2.write()
.jdbc("jdbc:postgresql:dbserver", "schema.tablename", connectionProperties); // 第三种写法,也是使用jdbc,只不过添加createTableColumnTypes,创建表的时候使用该属性字段创建表字段
jdbcDF.write()
.option("createTableColumnTypes", "name CHAR(64), comments VARCHAR(1024)")
.jdbc("jdbc:postgresql:dbserver", "schema.tablename", connectionProperties);

当我们的表已经存在的时候,使用上面的语句就会报错表已存在,这是因为我们没有指定存储模式,默认是ErrorIfExists

保存模式:

所以一般都是这样用:

tableDf3.write().mode(SaveMode.Append).jdbc("jdbc:oracle:thin:@IP:1521:DEMO", "TABLE_DEMO", connectionProperties);

对于connectionProperties还有很多其他选项:

这里面的truncate就是说当使用SaveMode.Overwrite的时候,设置truncate为true,就会对表进行truncate语句清理表,不再是删除表在重建表的操作。

点击关注,第一时间了解华为云新鲜技术~

SparkSQL高并发:读取存储数据库的更多相关文章

  1. 如何在高并发分布式系统中生成全局唯一Id(转)

    http://www.cnblogs.com/heyuquan/p/global-guid-identity-maxId.html 又一个多月没冒泡了,其实最近学了些东西,但是没有安排时间整理成博文, ...

  2. (转)如何在高并发分布式系统中生成全局唯一Id

    又一个多月没冒泡了,其实最近学了些东西,但是没有安排时间整理成博文,后续再奉上.最近还写了一个发邮件的组件以及性能测试请看 <NET开发邮件发送功能的全面教程(含邮件组件源码)> ,还弄了 ...

  3. 【Redis】1、Jedis对管道、事务以及Watch的操作来应对高并发

    对于一个互联网平台来说,高并发是经常会遇到的场景.最有代表性的比如秒杀和抢购.高并发会出现三个特点: 1.高并发读取 2.高并发写入(一致性) 3.出现超卖问题 前端如何应对? 1.缓存静态数据,例如 ...

  4. 高并发分布式系统如何做到唯一Id

    又一个多月没冒泡了,其实最近学了些东西,但是没有安排时间整理成博文,后续再奉上.最近还写了一个发邮件的组件以及性能测试请看 <NET开发邮件发送功能的全面教程(含邮件组件源码)> ,还弄了 ...

  5. Go项目实战:打造高并发日志采集系统(六)

    前情回顾 前文我们完成了日志采集系统的日志文件监控,配置文件热更新,协程异常检测和保活机制. 本节目标 本节加入kafka消息队列,kafka前文也介绍过了,可以对消息进行排队,解耦合和流量控制的作用 ...

  6. SSM实战——秒杀系统之高并发优化

    一:高并发点 高并发出现在秒杀详情页,主要可能出现高并发问题的地方有:秒杀地址暴露.执行秒杀操作. 二:静态资源访问(页面)优化——CDN CDN,内容分发网络.我们把静态的资源(html/css/j ...

  7. 在CentOS上使用Nginx和Tomcat搭建高可用高并发网站

    目录 目录 前言 创建CentOS虚拟机 安装Nginx 安装Tomcat 安装lvs和keepalived 反向代理 部署网站 搭建数据库 编写网站项目 解决session一致性 注意 参考资料 前 ...

  8. Sqlserver 高并发和大数据存储方案

    Sqlserver 高并发和大数据存储方案 随着用户的日益递增,日活和峰值的暴涨,数据库处理性能面临着巨大的挑战.下面分享下对实际10万+峰值的平台的数据库优化方案.与大家一起讨论,互相学习提高!   ...

  9. MySQL面试必考知识点:揭秘亿级高并发数据库调优与最佳实践法则

    做业务,要懂基本的SQL语句: 做性能优化,要懂索引,懂引擎: 做分库分表,要懂主从,懂读写分离... 数据库的使用,是开发人员的基本功,对它掌握越清晰越深入,你能做的事情就越多. 今天我们用10分钟 ...

  10. mongodb三种存储引擎高并发更新性能专题测试

    背景说明 近期北京理财频道反馈用来存放股市实时数据的MongoDB数据库写响应请求很慢,难以跟上业务写入速度水平.我们分析了线上现场的情况,发现去年升级到SSD磁盘后,数据持久化的磁盘IO开销已经不是 ...

随机推荐

  1. docker常用命令-docker网络

    docker命令详解 docker search 在docker hub中搜索镜像: docker pull 从docker镜像源服务器拉取指定镜像或者库镜像: docker push 推送指定镜像或 ...

  2. 微信小程序:音乐播放器

    音乐资源使用的是QQ音乐资源.图片资源使用的网易云音乐的专辑图片. HTML: <view class="container"> <div wx:for=&quo ...

  3. 【行云流水线实践】基于“OneBuild”方法对镜像进行快速装箱

    在云原生领域,无论使用哪种编排调度平台,Kubernetes,DockerSwarm,OpenShift等,业务都需要基于镜像进行交付,我们在内部实践"Source-to-image&quo ...

  4. 如何将word格式的文档转换成markdown格式的文档

    如何将word格式的文档转换成markdown格式的文档 如何将word格式的文档转换成markdown格式的文档 前言 A. 介绍Markdown和Word格式文档 什么是Markdown? Mar ...

  5. 31. 干货系列从零用Rust编写正反向代理,HTTP限流的实现(limit_req)

    wmproxy wmproxy已用Rust实现http/https代理, socks5代理, 反向代理, 静态文件服务器,四层TCP/UDP转发,七层负载均衡,内网穿透,后续将实现websocket代 ...

  6. 老是听到做PPT要会“内容可视化”,到底啥是内容可视化?

    在PPT中,内容可视化是指将文字.数据和概念等抽象信息转化为图像.图表.图表及其他可视化元素来呈现.通过合适的颜色.形状.大小和布局等视觉设计元素来强调信息的关键点和关系, 从而提高观众对信息的理解和 ...

  7. springCore完整学习教程2,入门级别

    上集说到:2. 3,咱们从2.3集开始 2. Externalized Configuration 2.3. External Application Properties Spring Boot会自 ...

  8. [AGC034D] Manhattan Max Matching

    Problem Statement Snuke is playing with red and blue balls, placing them on a two-dimensional plane. ...

  9. [ABC282Ex] Min + Sum

    Problem Statement You are given two sequences of integers of length $N$: $A = (A_1, A_2, \ldots, A_N ...

  10. BASE和最终一致性

    四种性质: 基本可用性,软状态,强一致性,弱一致性 更据更新数据后各进程访问到数据的时间和方式不同: 如何实现各种类型的一致性: 对于HBase数据库来讲: