Note:[ wechat:Y466551 | 可加勿骚扰,付费咨询 ]

论文信息

论文标题:SentiX: A Sentiment-Aware Pre-Trained Model for Cross-Domain Sentiment Analysis
论文作者:Jie Zhou, Junfeng Tian, Rui Wang, Yuanbin Wu, Wenming Xiao, Liang He
论文来源:
论文地址:download 
论文代码:download
视屏讲解:click

1 介绍

  出发点:预先训练好的语言模型已被广泛应用于跨领域的 NLP 任务,如情绪分析,实现了最先进的性能。然而,由于用户在不同域间的情绪表达的多样性,在源域上对预先训练好的模型进行微调往往会过拟合,导致在目标域上的结果较差;

  思路:通过大规模 review 数据集的领域不变情绪知识对情感软件语言模型(SENTIX)进行预训练,并将其用于跨领域情绪分析任务,而无需进行微调。本文提出了一些基于现有的标记和句子级别的词汇和注释的训练前任务,如表情符号、情感词汇和评级,而不受人为干扰。进行了一系列的实验,结果表明,该模型具有巨大的优势。

  预训练模型在跨域情感分析上存在的问题:

    • 现有的预训练模型侧重于通过自监督策略学习语义内容,而忽略了预训练短语的情绪特定知识;
    • 在微调阶段,预训练好的模型可能会通过学习过多的特定领域的情绪知识而过拟合源域,从而导致目标域的性能下降;

  贡献:

    • 提出了 SENTIX 用于跨域情绪分类,以在大规模未标记的多域数据中学习丰富的域不变情绪知识;
    • 在标记水平和句子水平上设计了几个预训练目标,通过掩蔽和预测来学习这种领域不变的情绪知识;
    • 实验表明,SENTIX 获得了最先进的跨领域情绪分析的性能,并且比 BERT 需要更少的注释数据才能达到等效的性能;

2 方法

2.1 模型框架

  

2.2 Sentiment Masking

  评论包含了许多半监督的情绪信号,如 情绪词汇、表情符号 和 评级,而大规模的评论数据可以从像  Yelp 这样的在线评论网站上获得。

    • 情绪词汇(Sentiment Words):积极(P),消极(N),其他(0);
    • 情感符(Emoticons):经常用于表示用户情感的特殊符号,如(“)”、“(”、“:”、“D”),本文选择语料库中经常出现的 100 个特殊符号作为情感符,并将其标记为 “E”,其他为 “0”;
    • 评分(Rating):情绪评分分为 5 个等级;

  策略:

    • Sentiment Word Masking (SWM):为丰富情绪信息,用 30% 的比率掩盖了情绪词;
    • Emoticon Masking (EM):由于一个句子中的表情符号数量相对较少,并且删除表情符号不会影响句子的语义信息,所以为每个句子屏蔽了 50% 的表情符号;
    • General Word Masking (GWM):如果只关注情感词和表情符号,模型可能会失去其他单词的一般语义信息。因此,使用 [MASK] 并用 15% 的比率替换句子中的一般单词来学习语义信息;

2.3 Pre-training Objectives

Sentiment-aware Word Prediction (SWP) 
  将损坏的句子 $\hat{x}$ 输入编码器,获得单词表示 $h_{i}$ 和句子表示 $h_{[C L S]}$,然后计算单词概率 $P\left(x_{i} \mid \hat{x}_{i}\right)=\operatorname{Softmax}\left(W_{w} \cdot h_{i}+b_{w}\right)$。损失函数 $L_{w}$ 是预测概率与真词标签之间的交叉熵:

  $\mathcal{L}_{w}=-\frac{1}{|\hat{\mathcal{X}}|} \sum_{\hat{x} \in \hat{\mathcal{X}}} \frac{1}{|\hat{x}|} \sum_{i=1}^{|\hat{x}|} \log \left(P\left(\left|x_{i}\right| \hat{x}_{i}\right)\right)$

Word Sentiment Prediction (WSP)

  根据情感知识,把词的情绪分为积极的、消极的和其他的。因此,设计了 WSP 来学习标记的情感知识。我们的目的是推断单词 $w_{i}$ 的情绪极性 $s_{i}$ 根据 $h_{i}$,$P\left(s_{i} \mid \hat{x_{i}}\right)= \operatorname{Softmax}\left(W_{s} \cdot h_{i}+b_{s}\right) $。这里使用交叉熵损失:

    $\mathcal{L}_{s}=-\frac{1}{|\hat{\mathcal{X}}|} \sum_{\hat{x} \in \hat{\mathcal{X}}} \frac{1}{|\hat{x}|} \sum_{i=1}^{|\hat{x}|} \log \left(P\left(s_{i} \mid \hat{x}_{i}\right)\right)$

Rating Prediction (RP)

  以上任务侧重于学习 Token 水平的情感知识。评级代表了句子级评论的情绪得分。推断评级将带来句子水平的情感知识。与BERT类似,使用最终状态 $h_{[\mathrm{CLS}]}$ 作为句子表示。该评级由 $P(r \mid \hat{x})=\operatorname{Softmax}\left(W_{r} \cdot h_{[C L S]}+b_{r}\right)$ 进行预测,并根据预测的评级分布计算损失:

    $\mathcal{L}_{r}=-\frac{1}{|\hat{\mathcal{X}}|} \sum_{\hat{x} \in \hat{\mathcal{X}}} \log (P(r \mid \hat{x}))$

2.4 Joint Training

  最后,我们共同优化了标记级目标 $\mathcal{L}_{T}$ 和句子级目标 $\mathcal{L}_{S}$。总损失为

    $\mathcal{L}=\mathcal{L}_{T}+\mathcal{L}_{S}$

  其中:

    $\mathcal{L}_{T}=\mathcal{L}_{w}+\mathcal{L}_{s}+\mathcal{L}_{e} $

    $\mathcal{L}_{S}=\mathcal{L}_{r}$

3 实验

  

论文解读(SentiX)《SentiX: A Sentiment-Aware Pre-Trained Model for Cross-Domain Sentiment Analysis》的更多相关文章

  1. CVPR2020论文解读:三维语义分割3D Semantic Segmentation

    CVPR2020论文解读:三维语义分割3D Semantic Segmentation xMUDA: Cross-Modal Unsupervised Domain Adaptation  for 3 ...

  2. VLDB'22 HiEngine极致RTO论文解读

    摘要:<Index Checkpoints for Instant Recovery in In-Memory Database Systems>是由华为云数据库创新Lab一作发表在数据库 ...

  3. itemKNN发展史----推荐系统的三篇重要的论文解读

    itemKNN发展史----推荐系统的三篇重要的论文解读 本文用到的符号标识 1.Item-based CF 基本过程: 计算相似度矩阵 Cosine相似度 皮尔逊相似系数 参数聚合进行推荐 根据用户 ...

  4. CVPR2019 | Mask Scoring R-CNN 论文解读

    Mask Scoring R-CNN CVPR2019 | Mask Scoring R-CNN 论文解读 作者 | 文永亮 研究方向 | 目标检测.GAN 推荐理由: 本文解读的是一篇发表于CVPR ...

  5. AAAI2019 | 基于区域分解集成的目标检测 论文解读

    Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学 ...

  6. Gaussian field consensus论文解读及MATLAB实现

    Gaussian field consensus论文解读及MATLAB实现 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 一.Introduction ...

  7. zz扔掉anchor!真正的CenterNet——Objects as Points论文解读

    首发于深度学习那些事 已关注写文章   扔掉anchor!真正的CenterNet——Objects as Points论文解读 OLDPAN 不明觉厉的人工智障程序员 ​关注他 JustDoIT 等 ...

  8. NIPS2018最佳论文解读:Neural Ordinary Differential Equations

    NIPS2018最佳论文解读:Neural Ordinary Differential Equations 雷锋网2019-01-10 23:32     雷锋网 AI 科技评论按,不久前,NeurI ...

  9. [论文解读] 阿里DIEN整体代码结构

    [论文解读] 阿里DIEN整体代码结构 目录 [论文解读] 阿里DIEN整体代码结构 0x00 摘要 0x01 文件简介 0x02 总体架构 0x03 总体代码 0x04 模型基类 4.1 基本逻辑 ...

  10. 【抓取】6-DOF GraspNet 论文解读

    [抓取]6-DOF GraspNet 论文解读 [注]:本文地址:[抓取]6-DOF GraspNet 论文解读 若转载请于明显处标明出处. 前言 这篇关于生成抓取姿态的论文出自英伟达.我在读完该篇论 ...

随机推荐

  1. 2022-12-20:二狗买了一些小兵玩具,和大胖一起玩, 一共有n个小兵,这n个小兵拍成一列, 第i个小兵战斗力为hi,然后他们两个开始对小兵进行排列, 一共进行m次操作,二狗每次操作选择一个数k,

    2022-12-20:二狗买了一些小兵玩具,和大胖一起玩, 一共有n个小兵,这n个小兵拍成一列, 第i个小兵战斗力为hi,然后他们两个开始对小兵进行排列, 一共进行m次操作,二狗每次操作选择一个数k, ...

  2. 2022-09-29:在第 1 天,有一个人发现了一个秘密。 给你一个整数 delay ,表示每个人会在发现秘密后的 delay 天之后, 每天 给一个新的人 分享 秘密。 同时给你一个整数 forg

    2022-09-29:在第 1 天,有一个人发现了一个秘密. 给你一个整数 delay ,表示每个人会在发现秘密后的 delay 天之后, 每天 给一个新的人 分享 秘密. 同时给你一个整数 forg ...

  3. 2020-11-17:java中,吞吐量优先和响应时间优先的回收器是哪些?

    福哥答案2020-11-17:对于吞吐量优先的场景,就只有一种选择,就是使用 PS 组合(Parallel Scavenge+Parallel Old ).对于响应时间优先的场景,在 JDK1.8 的 ...

  4. 2022-04-09:给你两个长度分别 n 和 m 的整数数组 nums 和 multipliers ,其中 n >= m , 数组下标 从 1 开始 计数。 初始时,你的分数为 0 。 你需要执行恰

    2022-04-09:给你两个长度分别 n 和 m 的整数数组 nums 和 multipliers ,其中 n >= m , 数组下标 从 1 开始 计数. 初始时,你的分数为 0 . 你需要 ...

  5. Salesforce LWC学习(四十四) Datatable 显示日期类型的有趣点思考

    本篇参考:https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.reference_sale ...

  6. KO之间互相调用

    需求 假设有两个KO,命名为moduleA.KO,moduleB.KO,现在要实现在moduleB.KO中调用moduleA.KO中的函数. 实现 ModuleA实现 源码: #include < ...

  7. UCOS II源码分析二

    最近大家都沉浸在找到实习的快乐中,自我充电的时间相对减少了,今天重拾一下ucosii的学习,记录如下: 上一篇文章分析了ucosii源码文件组织结构以及简单介绍了各个文件夹里对应文件的功能,要是对uc ...

  8. 研究NIST FIPS 199 - 安全分类的标准

    NIST FIPS 199 - 安全分类的标准 FIPS199是在2004年2月发布的,这是一份古老的文件,但在实施信息安全时应首先遵循,无论你准备遵守哪种安全标准.常见的安全标准有:CIS.ISO2 ...

  9. django购物车的实现

    1 购物车的实现问题思路 购物车需求分析: 1 未登陆和已登陆都保存到用户的购物车数据. 2 用户可以对购物车进行增删改查: 3 购物车有选择状态,只有选中的状态才能生成订单: 4 用户登陆时,合并c ...

  10. Java关键字break、continue 、return的区别,嵌套循环,数组的概念以及数组案例

    一.关键字 break.continue .return的区别 1.break : 用于在switch..case中放置语句块穿透, ​ 用于跳出循环 // 从1-100 遇到7的倍数 break f ...