题解 ARC104F
前言
在这里首先感谢一下题解区的 FZzzz,本人的题解思路主要是基于他并给出了自己的理解。
如非特殊说明,本题解中的数学符号原则上与题目中一致。
题目分析
需要转化的喵喵题。
我们需要把原问题转化成一个图论计数问题,然后剩下的就很好办了。
好,首先让我们修改一下题目的要求,将不存在的情况设为 \(p_i = 0\),这样就可以使得我们的 \(p_i\) 的值只可能取到自然数集合中连续的一段 \([0,n-1]\) 了。
考虑连边 \((i,p_i)\),我们首先能得到一个十分显然的性质,就是最终连边连出来的图必定没有环,证明显然,考虑偏序关系不允许出现环即可。
但是这个性质不是很强,我们还可以进一步得到相比更强的性质,就是连出来的图必定是一棵树,这个证明考虑 \(p_i\) 的值只会取到 \([0,i-1]\) 而已,又因为不会出现环,故现在此时连出来的是一棵树,并且是以 \(0\) 为根节点的树。
现在让我们观察一下每个节点上 \(h_i\) 的值,不难发现兄弟之间左方的兄弟的 \(h\) 值 \(\le\) 右方的兄弟的 \(h\) 值,且当前节点的 \(h\) 值一定大于他的儿子们。证明显然,考虑如果左方的兄弟大于自己,则自己会被左方的兄弟支配,变成他的儿子,故左右兄弟之间是 \(\le\),考虑如果自己的儿子大于等于自己,那么它必定会成为自己的兄弟甚至是祖先的兄弟,故父亲儿子之间是 \(\gt\)。
让我们定义 \(a_i\) 为 \(i\) 左边第一个的兄弟,让 \(b_i\) 为 \(i\) 最右边的儿子,设 \(c_i=\max\{c_{a_i} , c_{b_i} + 1\}\),则此时 \(c\) 必定是 \(h\) 的构造方案之一(证明考虑兄弟之间的偏序关系和父亲儿子之间的偏序关系),并且对于任意的 \(h\) 我们都有 \(h_i \ge c_i\),于是可以比较 \(c_i\) 与 \(x_i\) 就可以看出 \(p\) 是否合法。
最后,设 \(dp_{i,j,k}\) 为区间 \([i-1,j]\) 形成了一棵树,且 \(c_{b_{i-1}} \le k\) 时,\([i,j]\) 的方案数,时间复杂度 \(\mathcal O(n^4)\)。
代码实现
这里只给出了代码的关键部分,其余部分还恳请读者自行实现。
int n;
int X[MAX_SIZE];
int dp[MAX_SIZE][MAX_SIZE][MAX_SIZE];
void main() {
n = read();
for (int i = 1; i <= n; i++) {
X[i] = read();
}
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= n; j++) {
dp[i + 1][i][j] = 1;
}
}
for (int i = n; i >= 1; --i) {
for (int j = i; j <= n; j++) {
for (int k = 1; k <= n; k++) {
for (int p = i; p <= j; p++) {
int q = min(k, X[p]);
dp[i][j][k] =
mt.add(dp[i][j][k],
mt.mul(dp[i][p - 1][q], dp[p + 1][j][q - 1]));
}
}
}
}
printf("%lld\n", dp[1][n][n]);
return void();
}
题解 ARC104F的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
- JSOI2016R3 瞎BB题解
题意请看absi大爷的blog http://absi2011.is-programmer.com/posts/200920.html http://absi2011.is-programmer.co ...
随机推荐
- 学习LVM:archive 和 backup目录
推荐文档:Logical Volume Manager Administration 在掌握了基本的commands操作后,你是否对操作背后的一些东西产生好奇呢? 程序的configure一般会提供这 ...
- Swiper.vue?56a2:132 Uncaught DOMException: Failed to execute 'insertBefore' on 'Node': The node before which the new node is to be inserted is not a child of this node.
错误代码 解决方案 删除div标签.修改后,如下所示:
- go 判断文件是否存在,并创建
1 package main 2 3 import ( 4 "fmt" 5 "os" 6 ) 7 8 //判断文件夹是否存在 9 func PathExists ...
- Django2.2:UnicodeDecodeError: 'gbk' codec can't decode byte 0xa6 in position 9737: illegal multibyte sequence
报错截图: 解决方案: 打开django/views下的debug.py文件,转到line331行: with Path(CURRENT_DIR, 'templates', 'technical_50 ...
- Codeforces 1855B:Longest Divisors Interval 最长的连续约数区间
1855B.Longest Divisors Interval Description: 对于一个整数 \(n\) \((1\leq n \leq 10^{18})\),找到一段最长的区间\([l,r ...
- asset module type 替代 loader 处理图片字体等文件资源
前面文章中 体验了webpack的打包 .解析css资源 ,接下来看看项目中常用到的图片.字体.文件该怎么处理吧~ 项目路径如下,在上一篇 解析css资源 项目基础上增加了一些文件 demo ├─ s ...
- 【技术积累】Java里的volatile关键字到底能干嘛?
7.4 最害怕的一集 - volatile 7.4.1 最简单的一集 - volatile 语义 (难度 : ) 读 -> 读一个 volatile 必须从 主内存读 写 -> 写一个 v ...
- 混合开发模式是否可以在App备案制度下突围
网站 ICP 备案已施行了很久,我们也非常清楚必须在进行 ICP 备案后,网站才能在大陆范围合法运营,并且用户可以通过域名正常访问网站. 但是月初出了新规,明年起,国内的 App 也要像网站一样进行备 ...
- 深入探讨API调用性能优化与错误处理
随着互联网技术的不断发展,API(应用程序接口)已经成为软件系统中重要的组成部分.而优化API调用的性能以及处理错误和异常情况则是保障系统稳定性和可靠性的关键.本文将从以下几个方面来探讨如何进行性 ...
- springboot下载文件 范围下载
springboot下载文件 范围下载 关键词:springboot,download,Range,Content-Range,Content-Length,http code 206 Partial ...