http://baike.baidu.com/view/1419652.htm
 
下表列出了自由度为1-30以及80、100、120等t-分布的单侧和双侧区间值。例如,当样本数量n=5时,则自由度v=4,我们就可以查找表中以4开头的行。该行第5列值为2.132,对应的单侧值为95%(双侧值为90%)。这也就是说,T小于2.132的概率为95%(即单侧),记为Pr(−∞ < T < 2.132) = 0.95;同时,T值介于-2.132和2.132之间的概率为90%(即双侧),记为Pr(−2.132 < T < 2.132) = 0.9。
这是根据分布的对称性计算得到的,
  • Pr(T < −2.132) = 1 − Pr(T > −2.132) = 1 − 0.95 = 0.05,
因此,
  • Pr(−2.132 < T < 2.132) = 1 − 2(0.05) = 0.9.
注意 关于表格的最后一行的值:自由度为无限大(n=120)的t-分布和正态分布等价
单侧
75%
80%
85%
90%
95%
97.5%
99%
99.5%
99.75%
99.9%
99.95%
双侧
50%
60%
70%
80%
90%
95%
98%
99%
99.5%
99.8%
99.9%
1
1.000
1.376
1.963
3.078
6.314
12.71
31.82
63.66
127.3
318.3
636.6
2
0.816
1.061
1.386
1.886
2.920
4.303
6.965
9.925
14.09
22.33
31.60
3
0.765
0.978
1.250
1.638
2.353
3.182
4.541
5.841
7.453
10.21
12.92
4
0.741
0.941
1.190
1.533
2.132
2.776
3.747
4.604
5.598
7.173
8.610
5
0.727
0.920
1.156
1.476
2.015
2.571
3.365
4.032
4.773
5.893
6.869
6
0.718
0.906
1.134
1.440
1.943
2.447
3.143
3.707
4.317
5.208
5.959
7
0.711
0.896
1.119
1.415
1.895
2.365
2.998
3.499
4.029
4.785
5.408
8
0.706
0.889
1.108
1.397
1.860
2.306
2.896
3.355
3.833
4.501
5.041
9
0.703
0.883
1.100
1.383
1.833
2.262
2.821
3.250
3.690
4.297
4.781
10
0.700
0.879
1.093
1.372
1.812
2.228
2.764
3.169
3.581
4.144
4.587
11
0.697
0.876
1.088
1.363
1.796
2.201
2.718
3.106
3.497
4.025
4.437
12
0.695
0.873
1.083
1.356
1.782
2.179
2.681
3.055
3.428
3.930
4.318
13
0.694
0.870
1.079
1.350
1.771
2.160
2.650
3.012
3.372
3.852
4.221
14
0.692
0.868
1.076
1.345
1.761
2.145
2.624
2.977
3.326
3.787
4.140
15
0.691
0.866
1.074
1.341
1.753
2.131
2.602
2.947
3.286
3.733
4.073
16
0.690
0.865
1.071
1.337
1.746
2.120
2.583
2.921
3.252
3.686
4.015
17
0.689
0.863
1.069
1.333
1.740
2.110
2.567
2.898
3.222
3.646
3.965
18
0.688
0.862
1.067
1.330
1.734
2.101
2.552
2.878
3.197
3.610
3.922
19
0.688
0.861
1.066
1.328
1.729
2.093
2.539
2.861
3.174
3.579
3.883
20
0.687
0.860
1.064
1.325
1.725
2.086
2.528
2.845
3.153
3.552
3.850
21
0.686
0.859
1.063
1.323
1.721
2.080
2.518
2.831
3.135
3.527
3.819
22
0.686
0.858
1.061
1.321
1.717
2.074
2.508
2.819
3.119
3.505
3.792
23
0.685
0.858
1.060
1.319
1.714
2.069
2.500
2.807
3.104
3.485
3.767
24
0.685
0.857
1.059
1.318
1.711
2.064
2.492
2.797
3.091
3.467
3.745
25
0.684
0.856
1.058
1.316
1.708
2.060
2.485
2.787
3.078
3.450
3.725
26
0.684
0.856
1.058
1.315
1.706
2.056
2.479
2.779
3.067
3.435
3.707
27
0.684
0.855
1.057
1.314
1.703
2.052
2.473
2.771
3.057
3.421
3.690
28
0.683
0.855
1.056
1.313
1.701
2.048
2.467
2.763
3.047
3.408
3.674
29
0.683
0.854
1.055
1.311
1.699
2.045
2.462
2.756
3.038
3.396
3.659
30
0.683
0.854
1.055
1.310
1.697
2.042
2.457
2.750
3.030
3.385
3.646
40
0.681
0.851
1.050
1.303
1.684
2.021
2.423
2.704
2.971
3.307
3.551
50
0.679
0.849
1.047
1.299
1.676
2.009
2.403
2.678
2.937
3.261
3.496
60
0.679
0.848
1.045
1.296
1.671
2.000
2.390
2.660
2.915
3.232
3.460
80
0.678
0.846
1.043
1.292
1.664
1.990
2.374
2.639
2.887
3.195
3.416
100
0.677
0.845
1.042
1.290
1.660
1.984
2.364
2.626
2.871
3.174
3.390
120
0.677
0.845
1.041
1.289
1.658
1.980
2.358
2.617
2.860
3.160
3.373
 
0.674
0.842
1.036
1.282
1.645
1.960
2.326
2.576
2.807
3.090
3.291

t分布及t分布表的更多相关文章

  1. 数理统计4:均匀分布的参数估计,次序统计量的分布,Beta分布

    接下来我们就对除了正态分布以外的常用参数分布族进行参数估计,具体对连续型分布有指数分布.均匀分布,对离散型分布有二项分布.泊松分布几何分布. 今天的主要内容是均匀分布的参数估计,内容比较简单,读者应尝 ...

  2. LDA学习之beta分布和Dirichlet分布

    ---恢复内容开始--- 今天学习LDA主题模型,看到Beta分布和Dirichlet分布一脸的茫然,这俩玩意怎么来的,再网上查阅了很多资料,当做读书笔记记下来: 先来几个名词: 共轭先验: 在贝叶斯 ...

  3. 二项分布 , 多项分布, 以及与之对应的beta分布和狄利克雷分布

    1. 二项分布与beta分布对应 2. 多项分布与狄利克雷分布对应 3. 二项分布是什么?n次bernuli试验服从 二项分布 二项分布是N次重复bernuli试验结果的分布. bernuli实验是什 ...

  4. (转)Gamma分布,Beta分布,Multinomial多项式分布,Dirichlet狄利克雷分布

    1. Gamma函数 首先我们可以看一下Gamma函数的定义: Gamma的重要性质包括下面几条: 1. 递推公式: 2. 对于正整数n, 有 因此可以说Gamma函数是阶乘的推广. 3.  4.  ...

  5. 数理统计5:指数分布的参数估计,Gamma分布,Gamma分布与其他分布的联系

    今天的主角是指数分布,由此导出\(\Gamma\)分布,同样,读者应尝试一边阅读,一边独立推导出本文的结论.由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! 目录 Par ...

  6. 数理统计11:区间估计,t分布,F分布

    在之前的十篇文章中,我们用了九篇文章的篇幅讨论了点估计的相关知识,现在来稍作回顾. 首先,我们讨论了正态分布两个参数--均值.方差的点估计,给出了它们的分布信息,并指出它们是相互独立的:然后,我们讨论 ...

  7. t分布, 卡方x分布,F分布

    T分布:温良宽厚 本文由“医学统计分析精粹”小编“Hiu”原创完成,文章采用知识共享Attribution-NonCommercial-NoDerivatives 4.0国际许可协议(http://c ...

  8. Beta分布和Dirichlet分布

    在<Gamma函数是如何被发现的?>里证明了\begin{align*} B(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} \text{d} x = \frac ...

  9. 从 高斯 到 正态分布 到 Z分布 到 t分布

    正态分布是如何被高斯推导出来的, 我感觉高斯更像是猜出了正态分布. 详见这篇文章:<正态分布的前世今生> http://songshuhui.NET/archives/76501 说一说理 ...

  10. 统计学中z分布、t分布、F分布及χ^2分布

    Z就是正态分布,X^2分布是一个正态分布的平方,t分布是一个正态分布除以(一个X^2分布除以它的自由度然后开根号),F分布是两个卡方分布分布除以他们各自的自由度再相除 比如X是一个Z分布,Y(n)=X ...

随机推荐

  1. 偷师MapStruct

    转自自己的qq空间 2022年10月26日 一个项目看三遍 每遍都有新发现 嘿嘿嘿 我是代码小偷

  2. Composer 镜像原理 (1) —— 初识 Composer

    相关文章 Composer 镜像原理 (1) -- 初识 Composer Composer 镜像原理 (2) -- composer.json Composer 镜像原理 (3) -- 完结篇 何为 ...

  3. 智能制造之路—从0开始打造一套轻量级MOM平台之仓库管理(WMS)

    一.前言 讲仓库管理(WMS)之前,我们先来谈一谈ERP.前一篇文章,大家可以看出,我在做MOM平台规划的时候并没有提到任何ERP的信息,并不是被忽略掉了:而是对于制造企业来说,ERP是重中之重. M ...

  4. pandas: 设置列名&获取所有列名

    解决方案 download_page_data_df.columns = column_name2excel 参考链接 https://www.cnblogs.com/bigtreei/p/10145 ...

  5. [k8s]使用私有harbor镜像源

    前言 在node上手动执行命令可以正常从harbor拉取镜像,但是用k8s不行,使用kubectl describe pods xxx 提示未授权 unauthorized to access rep ...

  6. Programming abstractions in C阅读笔记:p107-p110

    <Programming Abstractions In C>学习第46天,p107-p110,3.1小节--"The concept of interface",总结 ...

  7. 微服务集成redis并通过redis实现排行榜的功能

    默认你已经看过我之前的教程了,并且拥有上个教程完成的项目, 之前的教程 https://www.cnblogs.com/leafstar/p/17638933.html 由于redis的安装网上教程很 ...

  8. WPF 入门笔记 - 08 - 动画

    感谢大家对上篇博文的支持 回到正题,今天和大家分享下学习动画过程中的内容.动画对我来讲还是蛮新鲜的,大家知道在接触WPF之前我只用过Winform,而Winform中并没有动画的概念,当想要实现某些& ...

  9. VINS中旋转外参初始化

    VINS 中的旋转外参初始化 ​ 为了使这个两个传感器融合,我们首先需要做的事情是将两个传感器的数据对齐,除了时间上的对齐,还有空间上的对齐.空间上的对齐通俗的讲就是将一个传感器获取的数据统一到另一个 ...

  10. 使用API数据接口获取商品详情数据的流程

    API数据接口是开发者获取第三方平台数据的一种方式,使用API接口可以快速地获取海量的商品详情数据,相比其他方式更加高效.实时.下面将介绍使用API数据接口获取商品详情数据的主要流程和步骤: 申请AP ...