http://baike.baidu.com/view/1419652.htm
 
下表列出了自由度为1-30以及80、100、120等t-分布的单侧和双侧区间值。例如,当样本数量n=5时,则自由度v=4,我们就可以查找表中以4开头的行。该行第5列值为2.132,对应的单侧值为95%(双侧值为90%)。这也就是说,T小于2.132的概率为95%(即单侧),记为Pr(−∞ < T < 2.132) = 0.95;同时,T值介于-2.132和2.132之间的概率为90%(即双侧),记为Pr(−2.132 < T < 2.132) = 0.9。
这是根据分布的对称性计算得到的,
  • Pr(T < −2.132) = 1 − Pr(T > −2.132) = 1 − 0.95 = 0.05,
因此,
  • Pr(−2.132 < T < 2.132) = 1 − 2(0.05) = 0.9.
注意 关于表格的最后一行的值:自由度为无限大(n=120)的t-分布和正态分布等价
单侧
75%
80%
85%
90%
95%
97.5%
99%
99.5%
99.75%
99.9%
99.95%
双侧
50%
60%
70%
80%
90%
95%
98%
99%
99.5%
99.8%
99.9%
1
1.000
1.376
1.963
3.078
6.314
12.71
31.82
63.66
127.3
318.3
636.6
2
0.816
1.061
1.386
1.886
2.920
4.303
6.965
9.925
14.09
22.33
31.60
3
0.765
0.978
1.250
1.638
2.353
3.182
4.541
5.841
7.453
10.21
12.92
4
0.741
0.941
1.190
1.533
2.132
2.776
3.747
4.604
5.598
7.173
8.610
5
0.727
0.920
1.156
1.476
2.015
2.571
3.365
4.032
4.773
5.893
6.869
6
0.718
0.906
1.134
1.440
1.943
2.447
3.143
3.707
4.317
5.208
5.959
7
0.711
0.896
1.119
1.415
1.895
2.365
2.998
3.499
4.029
4.785
5.408
8
0.706
0.889
1.108
1.397
1.860
2.306
2.896
3.355
3.833
4.501
5.041
9
0.703
0.883
1.100
1.383
1.833
2.262
2.821
3.250
3.690
4.297
4.781
10
0.700
0.879
1.093
1.372
1.812
2.228
2.764
3.169
3.581
4.144
4.587
11
0.697
0.876
1.088
1.363
1.796
2.201
2.718
3.106
3.497
4.025
4.437
12
0.695
0.873
1.083
1.356
1.782
2.179
2.681
3.055
3.428
3.930
4.318
13
0.694
0.870
1.079
1.350
1.771
2.160
2.650
3.012
3.372
3.852
4.221
14
0.692
0.868
1.076
1.345
1.761
2.145
2.624
2.977
3.326
3.787
4.140
15
0.691
0.866
1.074
1.341
1.753
2.131
2.602
2.947
3.286
3.733
4.073
16
0.690
0.865
1.071
1.337
1.746
2.120
2.583
2.921
3.252
3.686
4.015
17
0.689
0.863
1.069
1.333
1.740
2.110
2.567
2.898
3.222
3.646
3.965
18
0.688
0.862
1.067
1.330
1.734
2.101
2.552
2.878
3.197
3.610
3.922
19
0.688
0.861
1.066
1.328
1.729
2.093
2.539
2.861
3.174
3.579
3.883
20
0.687
0.860
1.064
1.325
1.725
2.086
2.528
2.845
3.153
3.552
3.850
21
0.686
0.859
1.063
1.323
1.721
2.080
2.518
2.831
3.135
3.527
3.819
22
0.686
0.858
1.061
1.321
1.717
2.074
2.508
2.819
3.119
3.505
3.792
23
0.685
0.858
1.060
1.319
1.714
2.069
2.500
2.807
3.104
3.485
3.767
24
0.685
0.857
1.059
1.318
1.711
2.064
2.492
2.797
3.091
3.467
3.745
25
0.684
0.856
1.058
1.316
1.708
2.060
2.485
2.787
3.078
3.450
3.725
26
0.684
0.856
1.058
1.315
1.706
2.056
2.479
2.779
3.067
3.435
3.707
27
0.684
0.855
1.057
1.314
1.703
2.052
2.473
2.771
3.057
3.421
3.690
28
0.683
0.855
1.056
1.313
1.701
2.048
2.467
2.763
3.047
3.408
3.674
29
0.683
0.854
1.055
1.311
1.699
2.045
2.462
2.756
3.038
3.396
3.659
30
0.683
0.854
1.055
1.310
1.697
2.042
2.457
2.750
3.030
3.385
3.646
40
0.681
0.851
1.050
1.303
1.684
2.021
2.423
2.704
2.971
3.307
3.551
50
0.679
0.849
1.047
1.299
1.676
2.009
2.403
2.678
2.937
3.261
3.496
60
0.679
0.848
1.045
1.296
1.671
2.000
2.390
2.660
2.915
3.232
3.460
80
0.678
0.846
1.043
1.292
1.664
1.990
2.374
2.639
2.887
3.195
3.416
100
0.677
0.845
1.042
1.290
1.660
1.984
2.364
2.626
2.871
3.174
3.390
120
0.677
0.845
1.041
1.289
1.658
1.980
2.358
2.617
2.860
3.160
3.373
 
0.674
0.842
1.036
1.282
1.645
1.960
2.326
2.576
2.807
3.090
3.291

t分布及t分布表的更多相关文章

  1. 数理统计4:均匀分布的参数估计,次序统计量的分布,Beta分布

    接下来我们就对除了正态分布以外的常用参数分布族进行参数估计,具体对连续型分布有指数分布.均匀分布,对离散型分布有二项分布.泊松分布几何分布. 今天的主要内容是均匀分布的参数估计,内容比较简单,读者应尝 ...

  2. LDA学习之beta分布和Dirichlet分布

    ---恢复内容开始--- 今天学习LDA主题模型,看到Beta分布和Dirichlet分布一脸的茫然,这俩玩意怎么来的,再网上查阅了很多资料,当做读书笔记记下来: 先来几个名词: 共轭先验: 在贝叶斯 ...

  3. 二项分布 , 多项分布, 以及与之对应的beta分布和狄利克雷分布

    1. 二项分布与beta分布对应 2. 多项分布与狄利克雷分布对应 3. 二项分布是什么?n次bernuli试验服从 二项分布 二项分布是N次重复bernuli试验结果的分布. bernuli实验是什 ...

  4. (转)Gamma分布,Beta分布,Multinomial多项式分布,Dirichlet狄利克雷分布

    1. Gamma函数 首先我们可以看一下Gamma函数的定义: Gamma的重要性质包括下面几条: 1. 递推公式: 2. 对于正整数n, 有 因此可以说Gamma函数是阶乘的推广. 3.  4.  ...

  5. 数理统计5:指数分布的参数估计,Gamma分布,Gamma分布与其他分布的联系

    今天的主角是指数分布,由此导出\(\Gamma\)分布,同样,读者应尝试一边阅读,一边独立推导出本文的结论.由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! 目录 Par ...

  6. 数理统计11:区间估计,t分布,F分布

    在之前的十篇文章中,我们用了九篇文章的篇幅讨论了点估计的相关知识,现在来稍作回顾. 首先,我们讨论了正态分布两个参数--均值.方差的点估计,给出了它们的分布信息,并指出它们是相互独立的:然后,我们讨论 ...

  7. t分布, 卡方x分布,F分布

    T分布:温良宽厚 本文由“医学统计分析精粹”小编“Hiu”原创完成,文章采用知识共享Attribution-NonCommercial-NoDerivatives 4.0国际许可协议(http://c ...

  8. Beta分布和Dirichlet分布

    在<Gamma函数是如何被发现的?>里证明了\begin{align*} B(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} \text{d} x = \frac ...

  9. 从 高斯 到 正态分布 到 Z分布 到 t分布

    正态分布是如何被高斯推导出来的, 我感觉高斯更像是猜出了正态分布. 详见这篇文章:<正态分布的前世今生> http://songshuhui.NET/archives/76501 说一说理 ...

  10. 统计学中z分布、t分布、F分布及χ^2分布

    Z就是正态分布,X^2分布是一个正态分布的平方,t分布是一个正态分布除以(一个X^2分布除以它的自由度然后开根号),F分布是两个卡方分布分布除以他们各自的自由度再相除 比如X是一个Z分布,Y(n)=X ...

随机推荐

  1. 常用语言的线程模型(Java、go、C++、python3)

    背景知识 软件是如何驱动硬件的? 硬件是需要相关的驱动程序才能执行,而驱动程序是安装在操作系统内核中.如果写了一个程序A,A程序想操作硬件工作,首先需要进行系统调用,由内核去找对应的驱动程序驱使硬件工 ...

  2. SkipList原理与实现

    机制 链表中查询的效率的复杂度是O(n), 有没有办法提升这个查询复杂度呢? 最简单的想法就是在原始的链表上构建多层索引. 在level 1(最底层为0), 每2位插入一个索引, 查询复杂度便是 O( ...

  3. 基于LLVM的海量数据排序算法研究。(二维表的排序算法)

    当待排序数据内容大于内存容量时,需将待排序内容分块,要进行排序的分块传入内存,未处于排序状态的存入外存,外存的读写时间是内存的百万倍,因此在内外存储器之间传输分块所消耗的 I/O 时间是大数据排序算法 ...

  4. Redis 集群偶数节点跨地域部署之高可用测试

    笔者目前所在公司存在多套 Redis 集群: A 集群 主 + 从 共 60 个分片,部署在 3 + 3 台物理机上,每台机器各承载 10 个端口 主库 30 个端口在广州,从库 30 个端口在中山 ...

  5. 2023牛客暑期多校训练营2 DEFGHIK

    比赛链接 D 题解 知识点:贪心. 首先,因为第一个人喜欢吃的可能会被后面的人选中,因此直接选最喜欢吃的可能会浪费机会.所以,我们考虑先看后面的人怎么选,就是倒着贪心,我们考虑证明. 假设当前剩下的菜 ...

  6. KVM (Centos7)使用macvtap网卡的后续 -- 宿主机创建macvtap网卡,并配置ip

    因为使用虚拟机上的 macvtap 网卡与宿主机器上的网卡无法直接通信,所以需要在宿主机上也创建 macvtap 网卡,将 ip 迁移过去. 因为未能找到配置文件的设置方法,所以使用脚本来配置,并将脚 ...

  7. 论文解读(MCD)《Maximum Classifier Discrepancy for Unsupervised Domain Adaptation》

    Note:[ wechat:Y466551 | 付费咨询,非诚勿扰 ] 论文信息 论文标题:Maximum Classifier Discrepancy for Unsupervised Domain ...

  8. selenium + python自动化环境搭建

    Selenium是一个用于Web应用程序测试的工具.Selenium测试直接运行在浏览器中,就像真正的用户在操作一样.支持的浏览器包括IE(7, 8, 9, 10, 11),Mozilla Firef ...

  9. AVR汇编(四):数据传送指令

    AVR汇编(四):数据传送指令 AVR指令主要分为五类:算术和逻辑指令.分支指令.位操作指令.数据传送指令.MCU控制指令,今天我们先来认识其中最常用的数据传送指令. 汇编程序的编写.编译和调试 学习 ...

  10. 免费拥有自己的 Github 资源加速器

    TurboHub 是一个免费的 Github 资源加速下载站点,可以帮助你快速下载 Github 上的资源.其核心逻辑是通过 Azure Static Web Apps 服务和 Azure Funct ...