四、利用指示器随机变量来解如下的帽子核对问题(hat-heck problem):n位顾客,他们每个人给餐厅核对帽子的服务生一顶帽子。服务生以随机顺序将帽子归还给顾客。请问拿到自己帽子的客户的期望数是多少?

文心一言:

我们可以将这个问题转化为求解在指示器随机变量基础上的期望值。

已知有n位顾客。

已知服务生以随机顺序将帽子归还给顾客。

根据指示器随机变量的定义,I(i)表示第i位顾客是否拿到了自己的帽子,其值为1表示拿到,0表示未拿到。

因为服务生归还帽子是随机的,所以每一位顾客拿到自己帽子的概率都是1/n。

根据期望值的定义,拿到自己帽子的客户的期望数为:

E[I(1)] + E[I(2)] + ... + E[I(n)] = n × (1/n) = 1

所以,拿到自己帽子的客户的期望数为1。

讯飞星火:

假设服务生将帽子归还给顾客的顺序是随机的,那么拿到自己帽子的期望数可以通过以下步骤计算:

1.计算所有可能的归还顺序的数量。对于n位顾客,有n!种不同的归还顺序。

2.对于每一种归还顺序,计算有多少种情况是服务生在归还帽子时先归还了某个顾客的帽子。设第i个顾客先被归还帽子的情况数为A(i),则A(i) = (n-i+1)!/[i!*(n-i)!]。

3.对于每一种归还顺序,计算有多少种情况是服务生在归还帽子时先归还了某个顾客的帽子,并且该顾客拿到了自己的帽子。设第i个顾客先被归还帽子且拿到自己的帽子的情况数为B(i),则B(i) = A(i)[n-i+1]!/[i!(n-i)!]。

4.对于每一种归还顺序,计算拿到自己帽子的期望数。设拿到自己帽子的期望数为E,则E = Σ[B(i)]。

因此,我们只需要计算出A(i)和B(i)即可求解E。具体地,可以使用递推公式计算A(i):

A(i) = (n-i+1)!/[i!(n-i)!]

A(0) = 1

A(i) = A(i-1)
(n-i+1)/[i*(n-i)]

同样地,可以使用递推公式计算B(i):

B(i) = [n-i+1]!/[i!(n-i)!]A(i)[n-i+1]!/[i!(n-i)!]

B(0) = 1

B(i) = B(i-1)[n-i+1]!/[i!(n-i)!]/[n-i+1]!/[i!*(n-i)!]

最后,将所有的B(i)相加即可得到拿到自己帽子的期望数E:

E = Σ[B(i)] = Σ[B(0)]Σ[B(1)]...Σ[B(n-1)]

= [n
(n-1)...2*1]^(1/n) * [1(n-1)/(n-1)(n-1)] * [2(n-2)/(n-2)(n-2)] * ... * [(n-1)(n-1)/(n-1)(n-1)]

= n^(1/n) * (n-1)(n-2)/(n-2)(n-2)

= n^(1/n) * (n-1)^((n-2)/(n))

华为盘古:

这个问题可以使用指示器随机变量来解决,即每次顾客归还帽子时,服务生会记录下帽子的序号,然后将帽子分配给下一位顾客。在每次交换帽子时,服务生会使用指示器随机地将顾客帽子上的序号与自己的帽子上的序号进行比较,如果相同,则将顾客帽子放入篮子中,如果没有相同,则随机地将顾客帽子放在一边。

在这种情况下,可以使用以下不等式:

$n = (x + μ)/2$

其中,x是顾客帽子的序号,μ是帽子的稀有度。这个不等式表明,顾客归还帽子的次数与顾客帽子的序号的平方成正比,即归还帽子的次数与顾客帽子的序号的平方成正比。

因此,我们可以计算每个顾客的期望数:

$y = (x + μ)/2$

其中,y是顾客的期望值,也就是他们希望收到帽子的序号。

通过这种方式,我们可以计算每个顾客的期望值,并将它们代入不等式中,以解决帽子核对问题。

360智脑:

假设有n个顾客,令X为拿到自己帽子的顾客数量,Y为拿到其他帽子的顾客数量,则X+Y=n。又因为每个顾客只拿一次帽子,所以X和Y都是独立同分布的伯努利随机变量,记其概率质量函数为f(x,y) = (1/2)^(x+y)*exp(-(x+y)/2).

要求期望数,即E(X),则可以将X看作在伯努利试验中成功的次数,代入上式得到E(X) = E(Y) + E(X|Y=0)(当Y>0时)+E(X|Y=1)(当Y=0时)。由于X和Y是独立的,因此可以分别计算它们的期望数并相加,得到E(X) = nP(X=0) + P(X=1)(1-P(X=0))。其中,P(X=0) = n(1/2)^(n-1),P(X=1) = n(1/2)^(n-1),且注意到如果某个顾客拿到了他想要的帽子,那么其他人就没有机会了,因此X和Y的期望值相等。

chatglm:

chatgpt:

设顾客$i$的帽子编号为$i$,令指示器随机变量$X_i$表示顾客$i$拿到自己的帽子,则

$$

X_i=\begin{cases}

1, & \text{如果顾客}i\text{拿到了自己的帽子}\

0, & \text{否则}

\end{cases}

$$

令$p_i$表示服务生将顾客$i$的帽子还给他的概率。由于服务生将帽子以随机顺序归还,因此$p_i=\frac{1}{n}$。

根据期望值的线性性,我们有拿到自己帽子的客户的期望数为

\begin{align}

E(\sum_{i=1}^n X_i)&=\sum_{i=1}^n E(X_i)\

&=\sum_{i=1}^n p_i\

&=\frac{1}{n}\sum_{i=1}^n 1\

&=\boxed{1}

\end{align
}

因此,拿到自己帽子的客户平均有一个人。

文心一言 VS 讯飞星火 VS chatgpt (32)-- 算法导论5.2 4题的更多相关文章

  1. 【对比】文心一言对飚ChatGPT实操对比体验

    前言 缘由 百度[文心一言]体验申请通过 本狗中午干饭时,天降短信,告知可以体验文心一言,苦等一个月的实操终于到来.心中这好奇的对比心理油然而生,到底是老美的[ChatGPT]厉害,还是咱度娘的[文心 ...

  2. 【个人首测】百度文心一言 VS ChatGPT GPT-4

    昨天我写了一篇文章GPT-4牛是牛,但这几天先别急,文中我测试了用GPT-4回答ChatGPT 3.5 和 Notion AI的问题,大家期待的图片输入也没有出现. 昨天下午百度发布了文心一言,对标C ...

  3. 文心一言,通营销之学,成一家之言,百度人工智能AI大数据模型文心一言Python3.10接入

    "文心"取自<文心雕龙>一书的开篇,作者刘勰在书中引述了一个古代典故:春秋时期,鲁国有一位名叫孔文子的大夫,他在学问上非常有造诣,但是他的儿子却不学无术,孔文子非常痛心 ...

  4. 获取了文心一言的内测及与其ChatGPT、GPT-4 对比结果

    百度在3月16日召开了关于文心一言(知识增强大语言模型)的发布会,但是会上并没现场展示demo.如果要测试的文心一言 也要获取邀请码,才能进行测试的. 我这边通过预约得到了邀请码,大概是在3月17日晚 ...

  5. 百度生成式AI产品文心一言邀你体验AI创作新奇迹:百度CEO李彦宏详细透露三大产业将会带来机遇(文末附文心一言个人用户体验测试邀请码获取方法,亲测有效)

    目录 中国版ChatGPT上线发布 强大中文理解能力 智能文学创作.商业文案创作 图片.视频智能生成 中国生成式AI三大产业机会 新型云计算公司 行业模型精调公司 应用服务提供商 总结 获取文心一言邀 ...

  6. 阿里版ChatGPT:通义千问pk文心一言

    随着 ChatGPT 热潮卷起来,百度发布了文心一言.Google 发布了 Bard,「阿里云」官方终于也宣布了,旗下的 AI 大模型"通义千问"正式开启测试! 申请地址:http ...

  7. 基于讯飞语音API应用开发之——离线词典构建

    最近实习在做一个跟语音相关的项目,就在度娘上搜索了很多关于语音的API,顺藤摸瓜找到了科大讯飞,虽然度娘自家也有语音识别.语义理解这块,但感觉应该不是很好用,毕竟之前用过百度地图的API,有问题也找不 ...

  8. android用讯飞实现TTS语音合成 实现中文版

    Android系统从1.6版本开始就支持TTS(Text-To-Speech),即语音合成.但是android系统默认的TTS引擎:Pic TTS不支持中文.所以我们得安装自己的TTS引擎和语音包. ...

  9. android讯飞语音开发常遇到的问题

    场景:android项目中共使用了3个语音组件:在线语音听写.离线语音合成.离线语音识别 11208:遇到这个错误,授权应用失败,先检查装机量(3台测试权限),以及appid的申请时间(35天期限), ...

  10. 初探机器学习之使用讯飞TTS服务实现在线语音合成

    最近在调研使用各个云平台提供的AI服务,有个语音合成的需求因此就使用了一下科大讯飞的TTS服务,也用.NET Core写了一个小示例,下面就是这个小示例及其相关背景知识的介绍. 一.什么是语音合成(T ...

随机推荐

  1. 报Bug的礼仪

    不要对1个程序员说:你的代码有Bug.他的第1反应是:1.你的环境有问题吧:2.傻逼你会用吗? 如果你委婉的说:你这个程序和预期的有点不1致,你看看是不是我的打开姿势有问题?他本能的会想:擦,是不是出 ...

  2. Jmeter连接数据库sql语句操作,查询后取值做变量

    第一步 :导入jar包 第二步 :创建JDBC Reques 第三步 :创建JDBC Connection Configuration  第四步:在request中输入数据进行操作 Query Typ ...

  3. Stable-diffusion WebUI API调用方法

    写这篇文章的主要原因是工作中需要写一个用训练好的模型批量生图的脚本,开始是想用python直接加载模型,但后来发现webui的界面中有不少好用的插件和参数,所以最终改成调用WebUI接口的方式来批量生 ...

  4. GPL协议原文及中文翻译

    GPL协议原文及中文翻译 原文参考链接 翻译参考链接 原文 GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 19 ...

  5. ansible 命令行模

    ansible 命令行模 ansible命令格式 命令格式:ansible <组名> -m <模块> -a <参数列表> 查看已安装的模块 ansible-doc ...

  6. Acwing127周赛第三题 构造矩阵 (套路)

    题目链接:构造矩阵 题目描述 我们希望构造一个 n×m 的整数矩阵. 构造出的矩阵需满足: 每一行上的所有元素之积均等于 k. 每一列上的所有元素之积均等于 k. 保证 k 为 1 或 −1. 请你计 ...

  7. DDD技术方案落地实践

    1. 引言 从接触领域驱动设计的初学阶段,到实现一个旧系统改造到DDD模型,再到按DDD规范落地的3个的项目.对于领域驱动模型设计研发,从开始的各种疑惑到吸收各种先进的理念,目前在技术实施这一块已经基 ...

  8. 【misc】ctfshow-stega10 --套娃

    附件下载下来是一张图片 各种隐写工具一把梭,无果,分析其二进制数据,把图片拖进hxd,发现一段疑似base64的东西 base64解密试试 解密出来是一个网址,打开下载第二个附件:flag.zip,打 ...

  9. 分享一次公司晋级考试的SQL题目,非常有趣的案例(postgresql 标量子查询 where lie 谓词过滤条件)

    同事今天晋级高级工程师考试,发来一道公司出题目让我帮忙进行优化,其中场景二的案例非常有意思. 题目内容如下: 原始SQL: scott=> explain analyze scott-> ...

  10. 提升运维效率:轻松掌握JumpServer安装和使用技巧

    前言 JumpServer 是一个开源的跳板机的解决方案,提供了对远程服务器的安全访问.会话录制和审计.用户身份管理等功能,适用于需要管理机器资源&大量服务器资源的情况. 本文将在分享 doc ...